
ABSTRACT

 A

Major Project

 On

 VISION-BASED HUMAN ACTIVITY RECOGNITION

 (Submitted in partial fulfillment of the requirements for the award of Degree)

 BACHELOR OF TECHNOLOGY

 In

COMPUTER SCIENCE AND ENGINEERING

 By

 B MANISH KUMAR (177R1A05J5)
 P ROHIT (177R1A0599)
 V SRI RAM REDDY (167R1A05P7)
 V SAI CHANDANA (177R1A0559)

 Under the Guidance of

 M MADHUSUDHAN

 (ASSISTANT PROFESSOR)

 DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

 CMR TECHNICAL CAMPUS

 UGC AUTONOMOUS
 (Accredited by NAAC, NBA, Permanently Affiliated to JNTUH, Approved by AICTE, New Delhi)

 Recognized Under Section 2(f) & 12(B) of the UGC Act.1956,

 Kandlakoya (V), Medchal Road, Hyderabad-501401.

 2018-2022

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

CERTIFICATE

 This is to certify “VISION-BASED HUMAN ACTIVITY RECOGNITION” that the project

entitled being submitted by B MANISH KUMAR (177R1A05J5), P ROHIT (177R1A0599),

V SRI RAM REDDY (167R1A05P7) & V SAI CHANDANA (177R1A0559) in partial

fulfillment of the requirements for the award of the degree of BTech in Computer Science and

Engineering to the Jawaharlal Nehru Technological University Hyderabad, is a record of Bonafede

work carried out by him/her under our guidance and supervision during the year 2021-22.

 The results embodied in this thesis have not been submitted to any other University or

Institute for the award of any degree or diploma.

Mr. M. Madhusudhan Dr. A. Raji Reddy

Assistant Professor DIRECTOR

 INTERNAL GUIDE

 Dr. K. Srujan Raju EXTERNAL EXAMINER

 Head of the department

 Submitted or voice Examination held on _____________

ACKNOWLEGDEMENT

 Apart from the efforts of us, the success of any project depends largely on the
encouragement and guidelines of many others. We take this opportunity to express our gratitude
to the people who have been instrumental in the successful completion of this project.

 We take this opportunity to express my profound gratitude and deep regard to my guide
Mr. M. Madhusudhan, Assistant Professor for his exemplary guidance, monitoring and
constant encouragement throughout the project the work. The blessing, help and guidance
given by him shall carry us a long way in the journey of life on which we are about to embark.
We also take this opportunity to express a deep sense of gratitude to Project Review
Committee (PRC) Mr. A. Uday Kiran, Mr. J. Narasimha Rao, Dr. T. S. Mastan Rao,
Mrs. G. Latha, Mr. A. Kiran Kumar, for their cordial support, valuable information and
guidance, which helped us in completing this task through various stages.

 We are also thankful to Dr. K. Srujan Raju, Head, Department of Computer Science
and Engineering for providing encouragement and support for completing this project
successfully.

 We are obliged to Dr. A. Raji Reddy, Director for being cooperative throughout the course
of this project. We also express our sincere gratitude to Sri. Ch. Gopal Reddy,
Chairman for providing excellent infrastructure and a nice atmosphere throughout the course
of this project.

 The guidance and support received from all of the members of CMR Technical Campus
who contributed to the completion of the project. We are grateful for their constant support
and help.

 Finally, we would like to take this opportunity to thank our family for their constant
encouragement, without which this assignment would not be completed. We sincerely
acknowledge and thank all those who gave support directly and indirectly in the completion of
this project.

 B MANISH KUMAR (177R1A05J5)

 P ROHIT (177R1A0599)

 V SRI RAM REDDY (167R1A05P7)

 V SAI CHANDANA (177R1A0559)

ABSTRACT

 With the advent of the Internet of Things (IoT), there have been significant advancements

in the area of human activity recognition (HAR) in recent years. HAR is applicable to wider

application such as elderly care, anomalous behaviour detection and surveillance system. Several

machine learning algorithms have been employed to predict the activities performed by the

human in an environment. However, traditional machine learning approaches have been

outperformed by feature engineering methods which can select an optimal set of features. On the

contrary, it is known that deep learning models such as Convolutional Neural Networks (CNN)

can extract features and reduce the computational cost automatically. In this paper, we use CNN

model to predict human activities from Image Data set model. Specifically, we employ transfer

learning to get deep image features and trained machine learning classifiers. Our experimental

results showed the accuracy of 96.95% using VGG-16. Our experimental results also confirmed

the high performance of VGG-16 as compared to rest of the applied CNN models.

 i

LIST OF FIGURES

 Figure No. Particulars Page No.

Fig:5.1 Architecture Diagram 12

Fig:5.2 Data Flow Diagram 13

Fig:5.4 Use case diagram 15

Fig:5.5 Class Diagram 16

Fig:5.6 Sequence Diagram 17

Fig:5.7 Activity Diagram 18

Fig:7.2 Django 32

ii

LIST OF SCREENSHOTS

 Screenshot No. Particulars Page No.

 Screenshot 12.1 Starting Project 69

Screenshot 12.2 Run the Main Program 69

Screenshot 12.3 Loading Tensor Flow Libraries 70

Screenshot 12.4 Classification with VGG16 70

Screenshot 12.5 Get Image Label 71

Screenshot 12.6 Results from Image 71

Screenshot 12.7 Loading Model HAR 72

Screenshot 12.8 Result 1 72

Screenshot 12.9 Result 2 73

Screenshot 12.10 Result 3 73

Screenshot 12.11 Patches From Images 74

Screenshot 12.12 Accuracy 74

 iii

 TABLE OF CONTENTS

 ABSTRACT i

 LIST OF FIGURES ii

 LIST OF SCREENSHOTS iii

 1 INTRODUCTION

 1

 2 LITERATURE SURVEY

6

 3 SYSTEM ANALYSIS 9

3.1 Existing System 9

3.2 Proposed System 10

4 REQUIREMENTS 11

4.1 Requirement Analysis 11

4.2 Requirement Specification 11

4.2.1 Functional Requirements 11

4.2.2 Software Requirements 11

4.2.3 Hardware Requirements 11

5 SYSTEM DESIGN 12

5.1 System Architecture 12

5.2 Data Flow Diagram 13

5.3 UML Diagrams 14

5.4 Use Case Diagram 15

5.5 Class Diagram 16

5.6 Sequence Diagram 17

5.7 Activity Diagram 18

6 MODULES 19

6.1 User 19

6.2 HAR Systems 19

6.3 VGG16 19

6.4 Transfer Learning 19

7 IMPLEMENTATION 20
7.1 Python 20
7.1.1 Interactive Mode Programming 20
7.1.2 Script Mode Programming 21
7.2 Django 32
7.2.1 Create a project 33
7.2.2 Create an application 35

8 SYSTEM STUDY 41

8.1 Feasibility Study 41
8.1.1 Economic Feasibility 41
8.1.2 Technical Feasibility 41
8.1.3 Social Feasibility 42

9 SYSTEM TESTING 43

9.1 Unit Testing 43
9.2 Integration Testing 43
9.3 Functional Test 43
9.4 System Test 44
9.5 White Box Testing 44
9.6 Black Box Testing 44
9.7 Unit Testing 45
9.8 Test Strategy and Approach 45
9.9 Integration Testing 45
9.10 Acceptance Testing 46
9.11 Test Cases 46

10 SAMPLE CODE 47

11 INPUT AND OUTPUT DESIGN 67

11.1 INPUT DESIGN 67
11.2 OUTPUT DESIGN 68

12 SCREENSHOTS 69

13 CONCLUSION 76

14 BIBILOGRAPHY 77

14.1 REFERENCES 77
14.2 GIT HUB REPOSITORY LINK 79

1. INTRODUCTION

CMRTC 1

 VISION-BASED HUMAN ACTIVITY RECOGNITION

1. INTRODUCTION

Human activity recognition (HAR) is an active research area because of its applications in

elderly care, automated homes and surveillance system. Several studies has been done on human

activity recognition in the past. Some of the existing work are either wearable based or non-

wearable based . Wearable based HAR system make use of wearable sensors that are attached on

the human body. Wearable based HAR system are intrusive in nature. Non-wearable based HAR

system do not require any sensors to attach on the human or to carry any device for activity

recognition. Non-wearable based approach can be further categorized into sensor based and

vision-based HAR systems. Sensor based technology use RF signals from sensors, such as RFID,

PIR sensors and Wi- Fi signals to detect human activities. Vision based technology use videos,

image frames from depth cameras or IR cameras to classify human activities. Sensor based HAR

system are non-intrusive in nature but may not provide high accuracy. Therefore, vision-based

human activity recognition system has gained significant interest in the present time.

Recognizing human activities from the streaming video is challenging. Video-based human

activity recognition can be categorized as marker-based and vision-based according to motion

features . Marker-based method make use of optic wearable markerbased motion capture

(MoCap) framework. It can accurately capture complex human motions but this approach has

some disadvantages. It require the optical sensors to be attached on the human and also demand

the need of multiple camera settings. Whereas, the vision based method make use of RGB or

depth image. It does not require the user to carry any devices or to attach any sensors on the

human. Therefore, this methodology is getting more consideration nowadays, consequently

making the HAR framework simple and easy to be deployed in many applications.

Most of the vision-based HAR systems proposed in the literature used traditional machine

learning algorithms for activity recognition. However, traditional machine learning methods

have been outperformed by deep learning methods in recent time. The most common type of

deep learning method is Convolutional Neural Network (CNN). CNN are largely applied in areas

related to computer vision. It consists series of convolution layers through which images are

passed for processing. In this paper, we use CNN to recognize human activities from Weizmann

Data set. We first extracted the frames for each activities from the videos. Specifically, we use

transfer learning to get deep image features and trained machine learning classifiers. We applied

CMRTC 2

 VISION-BASED HUMAN ACTIVITY RECOGNITION

3 different CNN models to classify activities and compared our results with the existing works

on the same data set.

In summary, the main contributions of our work are as follows:

1) We applied three different CNN models to classify human recognition activities and we

showed the accuracy of 96.95% using VGG-16.

2) We used transfer learning to leverage the knowledge gained from large-scale data set such as

ImageNet to the human activity recognition data set.

There have been a lot of research h on vision-based human activity recognition in recent years .

Most of the studied methods have depend on handcrafted feature extraction from the

videos/images and employed traditional classifiers for activity recognition. The traditional

approaches often achieved optimum results and exhibited high performances. However,

traditional methods are not feasible to deploy in real life because handcrafted features are highly

dependent on data and are not robust to the environment change.

Hidden Markov Model (HMMs) methods have been largely used as the recognition techniques in

the past because of its capability of temporal pattern decoding. However, researchers are more

interested in using deep learning techniques because of its ability to automatically extract the

features and learn deep pattern structures. Deep learning methods have clearly ruled out

traditional classification methods in the domain of computer vision. Deep learning techniques

have been largely employed recently in the domain of computer vision and have achieved

tremendous results. There fore, video-based human activity recognition using deep learning

models have gained a lot of interest in recent years. Zhuetal proposed an action classification

method by adding a mixed-norm regularization function to a deep LSTM network. One of the

most popular deep learning methods in frames/image processing is Convolutional Neural

Network (CNN). The re have been several works that utilized 2D-CNNs that take advantages of

spatial cor relation between the video frame s and combine the outputs employing different

strategies Many have also used additional input such as optical flow to 2D-CNN to get temporal

correlations information. Subsequently, 3D-CNNs were introduced that demonstrated

exceptional results in the classification of videos and frames. Wangetal. applied CNN to RGB

and depth frames to automatically extract the features. The obtained features were passed

CMRTC 3

 VISION-BASED HUMAN ACTIVITY RECOGNITION

through a fully connected neural network and achieved an improved accuracy. Jietal. proposed a

3D CNN model which perform s 3D convolutions and extract spatial and temporal features by

capturing the motion information for activity recognition. Simonyanetal. introduced ConvNet, a

two-stream convolution layer architecture that could achieve good results despite of limited

training data. Khaireetal. proposed a model that train convents from RGB-D data set and

combined the softmax scores from depth , motion and skeleton images at the classification level

to identify the activities. Karpathyetal. proposed the extension of CNN architecture in the first

Convolutional layers over a 40 video chunk. Similarly, Tranetal. used a deep 3D CNN

architecture (quiet similar to VGGnet) that utilize spatiotemporal convolutions and pooling in all

layers to improve the accuracy of the model.

In comparison, we are more interested to explore how transfer learning can be leveraged with

CNN models on benchmark dataset to improve classification accuracy.

According to the Alzheimer’ s Society, around 46.8M people are living with dementia and the

numbers will rise to 115.4M in 2050. One in three PwD shows aggressive behavior, which is

very stressful and upsetting for the person with dementia and their carers. Depression is also

common at all stages of dementia. It occurs in about 20– 40% of PwD. Identifying depression in

PwD can be difficult. To date, there is no single test or questionnaire to detect the depression due

to the complexities and multifaceted nature of the condition. The common approach to monitor

and manage the above-mentioned behavioral symptoms is via direct observation by caregivers,

family members and health care professionals. However, this is labor-intensive, subjective, time

consuming, costly and could increase the workload of caregivers and health care professionals.

Recently, ambient technologies have been explored extensively in a variety of settings, such as

“ smart homes” and hospitals, for health monitoring. These technologies could be adapted into

the early detection of behavioral symptoms that would aid caregivers and guide the headway of

tailored interventions. Most of the above-mentioned technologies often use on body bio-sensing

devices (e.g. actigraphs, accelerometer, biomarkers and bio-patches) for measuring signals

linking behavioral symptoms. However, it is suggested that PwD requires monitoring systems

that are “unobtrusive, and preferably collected in a transparent way without patient intervention

due to their cognitive impairment ” . Therefore, more recently researchers have explored

monitoring systems involving unobtrusive methods that includes video surveillance using

CMRTC 4

 VISION-BASED HUMAN ACTIVITY RECOGNITION

cameras and Kinetic sensor. Monitoring and recognition of aggression and depression using such

systems is still very much in its infancy. This could be due to the challenge faced by the

researchers to develop standard algorithms that can adequately and concisely recognize

behavioral symptoms. In this paper, we propose a novel method for recognizing behavioral

symptoms involving aggression and depression. The proposed approach benefits from the power

of transfer learning (TL) by using appearance features as deep CNN features, which are extracted

from various state-of-the-art deep models (e.g. VGG16, Inception-V3 and Inception ResNet-V2).

We also explore the various level of abstraction by exploring different extraction points in a

given CNN model (e.g. VGG16). This work includes the following novel contributions:

• To our knowledge, we are the first to report vision based recognition of behavioral symptoms

(aggressive, depressive, happy and neutral) in PwD.

• We demonstrate the effectiveness of TL using different state-of-the-art deep CNN models for

recognizing behavioral symptoms in PwD. We evaluate various combinations of deep CNN

features using SVM.

• We introduce a novel image dataset to advance video based surveillance research for behavior

recognition.

It is from the well-known ITV’s Emmerdale episodes involving dementia storyline.

Human action and behavior recognition has many potential applications including intelligent

surveillance, assistive technologies, robotics and human-computer interaction. It is a

fundamental and well-studied problem in computer vision with a long list of literature over the

years. Traditional approaches often depend on the hand-crafted feature extraction and

representation (e.g. HOG and SIFT), hand-object interactions , articulated pose and part-

based/structured models. Many of these approaches explore the spatial configuration of body

parts and hand-object interactions that often require body parts and/or object detector. Recently,

major advances in CNN-based deep models have challenged these approaches. These CNN

models are trained and evaluated on very large and highly diverse datasets often consisting

human-human, human-objects and human-animals interactions. In contrast, the targeted

behavioral symptoms are often expressed via body language (e.g. gestures) and facial expression,

and usually a hard problem for a machine to differentiate varius symptoms shown by the same

CMRTC 5

 VISION-BASED HUMAN ACTIVITY RECOGNITION

person. It is also known as fine-grained recognition. Deep CNN models are comprised of

multiple layers to learn representation of images/videos with multiple levels of abstractions

through a hierarchical learning process. Such models learn from very general (e.g. Gabor filters,

edges, color blobs) to task-specific features as we move from first-layer to the last-layer . Thus,

these models are explored for TL in solving visual recognition tasks. In TL, a base network is

trained on a base dataset. Then, the learned features (e.g. weights) are adapted, or transferred to a

second target network/model to be trained on a target dataset. This would work if the learned

features are task-independent, which means they are suitable for both base and target task. More

recently, it has been shown that it is possible to obtain state-of-the-art results using TL . This

suggests the layers of deep models do indeed learn features that are fairly general. In this paper,

we explore strategies to strengthen this generalizability. Automatic monitoring of the behavioral

symptoms is often based on wearable sensors. In, Chikhaouietal. have used Kinect and

accelerometer to classify aggressive and agitated behavior using ensemble learning classifier.

Whaleetal. used a smartphone app to collect context-sensitive information to monitor behavioral

patterns that might be indicative of depressive symptoms.

2. LITERATURE SURVEY

CMRTC 6

 VISION-BASED HUMAN ACTIVITY RECOGNITION

2. LITERATURE SURVEY

2.1 Noninvasive sensor based automated smoking activity detection

AUTHORS: B. Bhandari, J. Lu, X. Zheng, S. Rajasegarar, and C. Karmakar

Although smoking prevalence is declining in many countries, smoking related health problems

still leads the preventable causes of death in the world. Several smoking intervention

mechanisms have been introduced to help smoking cessation. However, these methods are

inefficient since they lack in providing real time personalized intervention messages to the

smoking addicted users. To address this challenge, the first step is to build an automated

smoking behavior detection system. In this study, we propose an accelerometer sensor based non-

invasive and automated framework for smoking behavior detection. We built a prototype device

to collect data from several participants performing smoking and other five confounding

activities. We used three different classifiers to compare activity detection performance using the

extracted features from accelerometer data. Our evaluation demonstrates that the proposed

approach is able to classify smoking activity among the confounding activities with high

accuracy. The proposed system shows the potential for developing a real time automated

smoking activity detection and intervention framework.

2.2 Compressive representation for device-free activity recognition with passive rfid signal

strength

AUTHORS: L. Yao, Q. Z. Sheng, X. Li, T. Gu, M. Tan, X. Wang, S. Wang, and W. Ruan

Understanding and recognizing human activities is a fundamental research topic for a wide range

of important applications such as fall detection and remote health monitoring and intervention.

Despite active research in human activity recognition over the past years, existing approaches

based on computer vision or wearable sensor technologies present several significant issues such

as privacy (e.g., using video camera to monitor the elderly at home) and practicality (e.g., not

possible for an older person with dementia to remember wearing devices). In this paper, we

present a low-cost, unobtrusive, and robust system that supports independent living of older

people. The system interprets what a person is doing by deciphering signal fluctuations using

radio-frequency identification (RFID) technology and machine learning algorithms. To deal with

CMRTC 7

 VISION-BASED HUMAN ACTIVITY RECOGNITION

noisy, streaming, and unstable RFID signals, we develop a compressive sensing, dictionary-

based approach that can learn a set of compact and informative dictionaries of activities using an

unsupervised subspace decomposition. In particular, we devise a number of approaches to

explore the properties of sparse coefficients of the learned dictionaries for fully utilizing the

embodied discriminative information on the activity recognition task. Our approach achieves

efficient and robust activity recognition via a more compact and robust representation of

activities. Extensive experiments conducted in a real-life residential environment demonstrate

that our proposed system offers a good overall performance and shows the promising practical

potential to underpin the applications for the independent living of the elderly.

2.3 Sparse Composition Of Body Poses And Atomic Actions For Human Activity

Recognition In Rgb-D Videos

AUTHORS : I. Lillo, J. C. Niebles, and A. Soto

This paper presents an approach to recognize human activities using body poses estimated from

RGB-D data. We focus on recognizing complex activities composed of sequential or

simultaneous atomic actions characterized by body motions of a single actor. We tackle this

problem by introducing a hierarchical compositional model that operates at three levels of

abstraction. At the lowest level, geometric and motion descriptors are used to learn a dictionary

of body poses. At the intermediate level, sparse compositions of these body poses are used to

obtain meaningful representations for atomic human actions. Finally, at the highest level, spatial

and temporal compositions of these atomic actions are used to represent complex human

activities. Our results show the benefits of using a hierarchical model that exploits the sharing

and composition of body poses into atomic actions, and atomic actions into activities. A

quantitative evaluation using two benchmark datasets illustrates the advantages of our model to

perform action and activity recognition.

2.4 Imagenet: A Large-Scale Hierarchical Image Database

AUTHORS : J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-Fei

The explosion of image data on the Internet has the potential to foster more sophisticated and

robust models and algorithms to index, retrieve, organize and interact with images and

CMRTC 8

 VISION-BASED HUMAN ACTIVITY RECOGNITION

multimedia data. But exactly how such data can be harnessed and organized remains a critical

problem. We introduce here a new database called “ImageNet”, a large-scale ontology of images

built upon the backbone of the WordNet structure. ImageNet aims to populate the majority of the

80,000 synsets of WordNet with an average of 500-1000 clean and full resolution images. This

will result in tens of millions of annotated images organized by the semantic hierarchy of

WordNet. This paper offers a detailed analysis of ImageNet in its current state: 12 subtrees with

5247 synsets and 3.2 million images in total. We show that ImageNet is much larger in scale and

diversity and much more accurate than the current image datasets. Constructing such a large-

scale database is a challenging task. We describe the data collection scheme with Amazon

Mechanical Turk. Lastly, we illustrate the usefulness of ImageNet through three simple

applications in object recognition, image classification and automatic object clustering. We hope

that the scale, accuracy, diversity and hierarchical structure of ImageNet can offer unparalleled

opportunities to researchers in the computer vision community and beyond.

2.5 A Vision-Based Transfer Learning Approach For Recognizing Behavioral Symptoms In

People With Dementia

AUTHORS: Z. Wharton, E. Thomas, B. Debnath, and A. Behera

With an aging population that continues to grow, dementia is a major global health concern. It is

a syndrome in which there is a deterioration in memory, thinking, behavior and the ability to

perform activities of daily living. Depression and aggressive behavior are the most upsetting and

challenging symptoms of dementia. Automatic recognition of these behaviors would not only be

useful to alert family members and caregivers, but also helpful in planning and managing daily

activities of people with dementia (PwD). In this work, we propose a vision-based approach that

unifies transfer learning and deep Convolutional neural network (CNN) for the effective

recognition of behavioral symptoms. We also compare the performance of state-of-the-art CNN

features with the hand-crafted HOG-feature, as well as their combination using a basic linear

SVM. The proposed method is evaluated on a newly created dataset, which is based on the

dementia storyline in ITVs Emmerdale episodes. The Alzheimer's Society has described it as a

"realistic portrayal" 1 of the condition to raise awareness of the issues surrounding dementia.

3. SYSTEM ANALYSIS

CMRTC 9

 VISION-BASED HUMAN ACTIVITY RECOGNITION

3. SYSTEM ANALYSIS

3.1 EXISTING SYSTEM:

In the existing work with wearable based or non-wearable based. Wearable based HAR system

make use of wearable sensors that are attached on the human body. Wearable based HAR system

are intrusive in nature. Non-wearable based HAR system do not require any sensors to attach on

the human or to carry any device for activity recognition. Non-wearable based approach can be

further categorized into sensor based HAR systems. Sensor based technology use RF signals

from sensors, such as RFID, PIR sensors and Wifi signals to detect human activities. Sensor

based HAR system are non-intrusive in nature but may not provide high accuracy.

DISADVANTAGES OF EXISTING SYSTEM:

➢ Require the optical sensors to be attached on the human and also demand the need of multiple

camera settings.

➢ Wearable dives cost are high.

➢ Algorithm: Markerbased motion Capture (MoCap) Framework.

CMRTC 10

 VISION-BASED HUMAN ACTIVITY RECOGNITION

3.2 PROPOSED SYSTEM:

The proposed System Vision based technology use videos, image frames from depth cameras or

IR cameras to classify human activities. Video-based human activity recognition can be

categorized as vision-based according to motion features. The vision based method make use of

RGB or depth image. It does not require the user to carry any devices or to attach any sensors on

the human. Therefore, this methodology is getting more consideration nowadays, consequently

making the HAR framework simple and easy to be deployed in many applications. The most

common type of deep learning method is Convolutional Neural Network (CNN). CNN are

largely applied in areas related to computer vision. It consists series of convolution layers

through which images are passed for processing.

ADVANTAGES OF PROPOSED SYSTEM:

➢ We use CNN to recognize human activities action recognition kinetics dataset.

➢ We use transfer learning to get deep image features and trained machine learning classifiers.

➢ Does not require the user to carry any devices or to attach any sensors on the human

Algorithm: Convolutional Neural Networks(CNN), VGG-16 (also called OxfordNet)

4. REQUIREMENTS

CMRTC 11

 VISION-BASED HUMAN ACTIVITY RECOGNITION

4. REQUIREMENT

4.1 REQUIREMENT ANALYSIS

The project involved analyzing the design of few applications so as to make the application more

users friendly. To do so, it was really important to keep the instigation from one screen to the

other well ordered and at the same time reducing the amount of typing the user needs to do. In

order to make the application more accessible, the browser version had to be chosen so that it is

compatible with most of the Browsers.

4.2 REQUIREMENT SPECIFICATION

4.2.1 Functional Requirements

⚫ Graphical User interface with the User.

4.2.2 Software Requirements

For developing the application the following are the Software Requirements:

⚫ Python

Operating Systems supported

Windows 10 64 BIT

Technologies and Languages used to Develop

⚫ Python

Debugger and Emulator

⚫ Any Browser (Particularly Chrome)

4.2.3 Hardware Requirements

⚫ Processor: Intel i3

⚫ RAM: 4GB

⚫ Space on Hard Disk: Minimum 1 TB

5. SYSTEM DESIGN

CMRTC 12

 VISION-BASED HUMAN ACTIVITY RECOGNITION

5. SYSTEM DESIGN

5.1 SYSTEM ARCHITECTURE:

CMRTC 13

 VISION-BASED HUMAN ACTIVITY RECOGNITION

5.2 DATA FLOW DIAGRAM:

1. The DFD is also called as bubble chart. It is a simple graphical formalism that can be used to

represent a system in terms of input data to the system, various processing carried out on this

data, and the output data is generated by this system.

2. The data flow diagram (DFD) is one of the most important modeling tools. It is used to model

the system components. These components are the system process, the data used by the process,

an external entity that interacts with the system and the information flows in the system.

3. DFD shows how the information moves through the system and how it is modified by a series

of transformations. It is a graphical technique that depicts information flow and the

transformations that are applied as data moves from input to output.

4. DFD is also known as bubble chart. A DFD may be used to represent a system at any level of

abstraction. DFD may be partitioned into levels that represent increasing information flow and

functional detail.

CMRTC 14

 VISION-BASED HUMAN ACTIVITY RECOGNITION

5.3 UML DIAGRAMS

UML stands for Unified Modeling Language. UML is a standardized general-purpose modeling

language in the field of object-oriented software engineering. The standard is managed, and was

created by, the Object Management Group.

The goal is for UML to become a common language for creating models of object oriented

computer software. In its current form UML is comprised of two major components: a Meta-

model and a notation. In the future, some form of method or process may also be added to; or

associated with, UML.

The Unified Modeling Language is a standard language for specifying, Visualization,

Constructing and documenting the artifacts of software system, as well as for business modeling

and other non-software systems.

The UML represents a collection of best engineering practices that have proven successful in the

modeling of large and complex systems.

The UML is a very important part of developing objects oriented software and the software

development process. The UML uses mostly graphical notations to express the design of

software projects.

GOALS:

The Primary goals in the design of the UML are as follows:

1. Provide users a ready-to-use, expressive visual modeling Language so that they can develop

and exchange meaningful models.

2. Provide extensibility and specialization mechanisms to extend the core concepts.

3. Be independent of particular programming languages and development process.

4. Provide a formal basis for understanding the modeling language.

5. Encourage the growth of OO tools market.

6. Support higher level development concepts such as collaborations, frameworks, patterns and

components.

CMRTC 15

 VISION-BASED HUMAN ACTIVITY RECOGNITION

5.4 USE CASE DIAGRAM:

A use case diagram in the Unified Modeling Language (UML) is a type of behavioral diagram

defined by and created from a Use-case analysis. Its purpose is to present a graphical overview

of the functionality provided by a system in terms of actors, their goals (represented as use cases),

and any dependencies between those use cases. The main purpose of a use case diagram is to

show what system functions are performed for which actor. Roles of the actors in the system can

be depicted.

CMRTC 16

 VISION-BASED HUMAN ACTIVITY RECOGNITION

5.5 CLASS DIAGRAM:

In software engineering, a class diagram in the Unified Modeling Language (UML) is a type of

static structure diagram that describes the structure of a system by showing the system's classes,

their attributes, operations (or methods), and the relationships among the classes. It explains

which class contains information.

CMRTC 17

 VISION-BASED HUMAN ACTIVITY RECOGNITION

5.6 SEQUENCE DIAGRAM:

A sequence diagram in Unified Modeling Language (UML) is a kind of interaction diagram that

shows how processes operate with one another and in what order. It is a construct of a Message

Sequence Chart. Sequence diagrams are sometimes called event diagrams, event scenarios, and

timing diagrams.

CMRTC 18

 VISION-BASED HUMAN ACTIVITY RECOGNITION

5.7 ACTIVITY DIAGRAM:

Activity diagrams are graphical representations of workflows of stepwise activities and actions

with support for choice, iteration and concurrency. In the Unified Modeling Language, activity

diagrams can be used to describe the business and operational step-by-step workflows of

components in a system. An activity diagram shows the overall flow of control.

6. MODULES

CMRTC 19

 VISION-BASED HUMAN ACTIVITY RECOGNITION

6.1 User:

6. MODULES:

The User can start the project by running mainrun.py file. User has to give –input (Video file

path).The open cv class VideoCapture(0) means primary camera of the system, VideoCapture(1)

means secondary camera of the system. VideoCapture(Videfile path) means with out camera we

can load the video file from the disk. Vgg16, Vgg19 has programitaically configured. User can

change the model selection in the code and can run in multiple ways.

6.2 HAR System:

Video-based human activity recognition can be categorized as vision-based according. The

vision based method make use of RGB or depth image. It does not require the user to carry any

devices or to attach any sensors on the human. Therefore, this methodology is getting more

consideration nowadays, consequently making the HAR framework simple and easy to be

deployed in many applications. We first extracted the frames for each activities from the videos.

Specifically, we use transfer learning to get deep image features and trained machine learning

classifiers.

6.3 VGG16:

VGG16 is a Convolutional neural network model. Deep Convolutional Networks for Large-Scale

Image Recognition”. The model achieves 92.7% top-5 test accuracy in ImageNet, which is a

dataset of over 14 million images belonging to 1000 classes. It was one of the famous model

submitted to ILSVRC-2014. It makes the improvement over AlexNet by replacing large kernel-

sized filters (11 and 5 in the first and second Convolutional layer, respectively) with multiple

3×3 kernel-sized filters one after another. VGG16 was trained for weeks and was using NVIDIA

Titan Black GPU’s.

6.4 Transfer Learning:

Transfer learning is a machine learning method where a model developed for a task is reused as

the starting point for a model on a second task. It is a popular approach in deep learning where

pre-trained models are used as the starting point on computer vision and natural language

processing tasks given the vast compute and time resources required to develop neural network

models on these problems and from the huge jumps in skill that they provide on related problems.

7. IMPLEMENTATION

CMRTC 20

 VISION-BASED HUMAN ACTIVITY RECOGNITION

7.1 PYTHON

7. IMPLEMENTATION

Python is a general-purpose interpreted, interactive, object-oriented, and high-level programming

language. An interpreted language, Python has a design philosophy that emphasizes

code readability (notably using whitespace indentation to delimit code blocks rather than curly

brackets or keywords), and a syntax that allows programmers to express concepts in fewer lines

of code than might be used in languages such as C++or Java. It provides constructs that enable

clear programming on both small and large scales. Python interpreters are available for

many operating systems. CPython, the reference implementation of Python, is open

source software and has a community-based development model, as do nearly all of its variant

implementations. CPython is managed by the non-profit Python Software Foundation. Python

features a dynamic type system and automatic memory management. It supports multiple

programming paradigms, including object-oriented, imperative, functional and procedural, and

has a large and comprehensive standard library.

7.1.1 Interactive Mode Programming

Invoking the interpreter without passing a script file as a parameter brings up the

following prompt −

$ python

Python 2.4.3 (#1, Nov 11 2010, 13:34:43)

[GCC 4.1.2 20080704 (Red Hat 4.1.2-48)] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>>

Type the following text at the Python prompt and press the Enter −

>>> print "Hello, Python!"

If you are running new version of Python, then you would need to use print statement with

parenthesis as in print ("Hello, Python!");. However in Python version 2.4.3, this produces the

following result −

Hello, Python!

CMRTC 21

 VISION-BASED HUMAN ACTIVITY RECOGNITION

7.1.2 Script Mode Programming

Invoking the interpreter with a script parameter begins execution of the script and continues until

the script is finished. When the script is finished, the interpreter is no longer active.

Let us write a simple Python program in a script. Python files have extension .py. Type the

following source code in a test.py file −

Live Demo

print "Hello, Python!"

We assume that you have Python interpreter set in PATH variable. Now, try to run this

program as follows −

$ python test.py

This produces the following result −

Hello, Python!

Let us try another way to execute a Python script. Here is the modified test.py file −

Live Demo

#!/usr/bin/python

print "Hello, Python!"

We assume that you have Python interpreter available in /usr/bin directory. Now, try to

run this program as follows −

$ chmod +x test.py # This is to make file executable

$./test.py

This produces the following result −

Hello, Python!

⚫ Python Identifiers

A Python identifier is a name used to identify a variable, function, class, module or other object.

An identifier starts with a letter A to Z or a to z or an underscore (_) followed by zero or more

letters, underscores and digits (0 to 9).

Python does not allow punctuation characters such as @, $, and % within identifiers. Python is a

case sensitive programming language. Thus, Manpower and manpower are two different

identifiers in Python.

Here are naming conventions for Python identifiers −

Class names start with an uppercase letter. All other identifiers start with a lowercase letter.

CMRTC 22

 VISION-BASED HUMAN ACTIVITY RECOGNITION

Starting an identifier with a single leading underscore indicates that the identifier is private.

Starting an identifier with two leading underscores indicates a strongly private identifier.

If the identifier also ends with two trailing underscores, the identifier is a language-defined

special name.

⚫ Reserved Words

The following list shows the Python keywords. These are reserved words and you cannot use

them as constant or variable or any other identifier names. All the Python keywords contain

lowercase letters only.

and exec not

assert finally or

break for pass

class from print

continue global raise

def if return

del import try

elif in while

else is with

except lambdayield

⚫ Lines and Indentation

Python provides no braces to indicate blocks of code for class and function definitions or flow

control. Blocks of code are denoted by line indentation, which is rigidly enforced.

The number of spaces in the indentation is variable, but all statements within the block

must be indented the same amount. For example −

if True:

print "True"

else:

print "False"

However, the following block generates an error −

if True:

print "Answer"

print "True"

CMRTC 23

 VISION-BASED HUMAN ACTIVITY RECOGNITION

else:

print "Answer"

print "False"

Thus, in Python all the continuous lines indented with same number of spaces would form a

block. The following example has various statement blocks −

Note − Do not try to understand the logic at this point of time. Just make sure you understood

various blocks even if they are without braces.

#!/usr/bin/python

import sys

try:

open file stream

file = open(file_name, "w")

except IOError:

print "There was an error writing to", file_name

sys.exit()

print "Enter '", file_finish,

print "' When finished"

while file_text != file_finish:

file_text = raw_input("Enter text: ")

if file_text == file_finish:

close the file

file.close

break

file.write(file_text)

file.write("\n")

file.close()

file_name = raw_input("Enter filename: ")

if len(file_name) == 0:

print "Next time please enter something"

sys.exit()

CMRTC 24

 VISION-BASED HUMAN ACTIVITY RECOGNITION

try:

file = open(file_name, "r")

except IOError:

print "There was an error reading file"

sys.exit()

file_text = file.read()

file.close()

print file_text

Multi-Line Statements

Statements in Python typically end with a new line. Python does, however, allow the use of

the line continuation character (\) to denote that the line should continue. For example −

total = item_one + \

item_two + \

item_three

Statements contained within the [], {}, or () brackets do not need to use the line

continuation character. For example −

days = ['Monday', 'Tuesday', 'Wednesday',

'Thursday', 'Friday']

Quotation in Python

Python accepts single ('), double (") and triple (''' or """) quotes to denote string literals, as long

as the same type of quote starts and ends the string.

The triple quotes are used to span the string across multiple lines. For example, all the

following are legal −

word = 'word'

sentence = "This is a sentence."

paragraph = """This is a paragraph. It is

made up of multiple lines and sentences."""

Comments in Python

A hash sign (#) that is not inside a string literal begins a comment. All characters after the # and

up to the end of the physical line are part of the comment and the Python interpreter ignores them.

CMRTC 25

 VISION-BASED HUMAN ACTIVITY RECOGNITION

Live Demo

#!/usr/bin/python

First comment

print "Hello, Python!" # second comment

This produces the following result −

Hello, Python!

You can type a comment on the same line after a statement or expression −

name = "Madisetti" # This is again comment

You can comment multiple lines as follows −

This is a comment.

This is a comment, too.

This is a comment, too.

I said that already.

Following triple-quoted string is also ignored by Python interpreter and can be used as a

multiline comments:

'''

This is a multiline

comment.

'''

Using Blank Lines

A line containing only whitespace, possibly with a comment, is known as a blank line and

Python totally ignores it.

In an interactive interpreter session, you must enter an empty physical line to terminate a

multiline statement.

Waiting for the User

The following line of the program displays the prompt, the statement saying “Press the

enter key to exit”, and waits for the user to take action −

#!/usr/bin/python

raw_input("\n\nPress the enter key to exit.")Here, "\n\n" is used to create two new lines before

displaying the actual line. Once the user presses the key, the program ends. This is a nice trick to

keep a console window open until the user is done with an application.

CMRTC 26

 VISION-BASED HUMAN ACTIVITY RECOGNITION

Multiple Statements on a Single Line

The semicolon (;) allows multiple statements on the single line given that neither statement

starts a new code block. Here is a sample snip using the semicolon.

import sys; x = 'foo'; sys.stdout.write(x + '\n')

Multiple Statement Groups as Suites

A group of individual statements, which make a single code block are called suites in Python.

Compound or complex statements, such as if, while, def, and class require a header line and a

suite.

Header lines begin the statement (with the keyword) and terminate with a colon (:) and

are followed by one or more lines which make up the suite. For example −

if expression :

suite

elif expression :

suite

else :

Suite

⚫ Command Line Arguments

Many programs can be run to provide you with some basic information about how they

should be run. Python enables you to do this with -h −

$ python -h

usage: python [option] ... [-c cmd | -m mod | file | -] [arg] ...

Options and arguments (and corresponding environment variables):

-c cmd : program passed in as string (terminates option list)

-d : debug output from parser (also PYTHONDEBUG=x)

-E : ignore environment variables (such as PYTHONPATH)

-h : print this help message and exit

You can also program your script in such a way that it should accept various options. Command

Line Arguments is an advanced topic and should be studied a bit later once you have gone

through rest of the Python concepts.

CMRTC 27

 VISION-BASED HUMAN ACTIVITY RECOGNITION

⚫ Python Lists

The list is a most versatile datatype available in Python which can be written as a list of comma-

separated values (items) between square brackets. Important thing about a list is that items in a

list need not be of the same type.

Creating a list is as simple as putting different comma-separated values between square

brackets. For example −

list1 = ['physics', 'chemistry', 1997, 2000];

list2 = [1, 2, 3, 4, 5];

list3 = ["a", "b", "c", "d"]

Similar to string indices, list indices start at 0, and lists can be sliced, concatenated and so on.

A tuple is a sequence of immutable Python objects. Tuples are sequences, just like lists. The

differences between tuples and lists are, the tuples cannot be changed unlike lists and tuples use

parentheses, whereas lists use square brackets.

Creating a tuple is as simple as putting different comma-separated values. Optionally you

can put these comma-separated values between parentheses also. For example −

tup1 = ('physics', 'chemistry', 1997, 2000);

tup2 = (1, 2, 3, 4, 5);

tup3 = "a", "b", "c", "d";

The empty tuple is written as two parentheses containing nothing −

tup1 = ();

To write a tuple containing a single value you have to include a comma, even though there

is only one value −

tup1 = (50,);

Like string indices, tuple indices start at 0, and they can be sliced, concatenated, and so on.

Accessing Values in Tuples

To access values in tuple, use the square brackets for slicing along with the index or indices

to obtain value available at that index. For example −

Live Demo

#!/usr/bin/python

tup1 = ('physics', 'chemistry', 1997, 2000);

tup2 = (1, 2, 3, 4, 5, 6, 7);

CMRTC 28

 VISION-BASED HUMAN ACTIVITY RECOGNITION

print "tup1[0]: ", tup1[0];

print "tup2[1:5]: ", tup2[1:5];

When the above code is executed, it produces the following result −

tup1[0]: physics

tup2[1:5]: [2, 3, 4, 5]

Updating Tuples

Accessing Values in Dictionary

To access dictionary elements, you can use the familiar square brackets along with the key

to obtain its value. Following is a simple example −

Live Demo

#!/usr/bin/python

dict = {'Name': 'Zara', 'Age': 7, 'Class': 'First'}

print "dict['Name']: ", dict['Name']

print "dict['Age']: ", dict['Age']

When the above code is executed, it produces the following result −

dict['Name']: Zara

dict['Age']: 7

If we attempt to access a data item with a key, which is not part of the dictionary, we get an error

as follows −

Live Demo

#!/usr/bin/python

dict = {'Name': 'Zara', 'Age': 7, 'Class': 'First'}

print "dict['Alice']: ", dict['Alice']

When the above code is executed, it produces the following result −

dict['Alice']:

Traceback (most recent call last):

File "test.py", line 4, in <module>

print "dict['Alice']: ", dict['Alice'];

KeyError: 'Alice'

Updating Dictionary

CMRTC 29

 VISION-BASED HUMAN ACTIVITY RECOGNITION

You can update a dictionary by adding a new entry or a key-value pair, modifying an

existing entry, or deleting an existing entry as shown below in the simple example −

Live Demo

#!/usr/bin/python

dict = {'Name': 'Zara', 'Age': 7, 'Class': 'First'}

dict['Age'] = 8; # update existing entry

dict['School'] = "DPS School"; # Add new entry

print "dict['Age']: ", dict['Age']

print "dict['School']: ", dict['School']

When the above code is executed, it produces the following result −

dict['Age']: 8

dict['School']: DPS School

Delete Dictionary Elements

You can either remove individual dictionary elements or clear the entire contents of a dictionary.

You can also delete entire dictionary in a single operation.

To explicitly remove an entire dictionary, just use the del statement. Following is a simple

example −

Live Demo

#!/usr/bin/python

dict = {'Name': 'Zara', 'Age': 7, 'Class': 'First'}

del dict['Name']; # remove entry with key 'Name'

dict.clear(); # remove all entries in dict

del dict ; # delete entire dictionary

print "dict['Age']: ", dict['Age']

print "dict['School']: ", dict['School']

This produces the following result. Note that an exception is raised because after del dict

dictionary does not exist any more −

dict['Age']:

Traceback (most recent call last):

File "test.py", line 8, in <module>

print "dict['Age']: ", dict['Age'];

CMRTC 30

 VISION-BASED HUMAN ACTIVITY RECOGNITION

TypeError: 'type' object is unsubscriptable

Note − del() method is discussed in subsequent section.

⚫ Properties of Dictionary Keys

Dictionary values have no restrictions. They can be any arbitrary Python object, either standard

objects or user-defined objects. However, same is not true for the keys.

There are two important points to remember about dictionary keys −

(a) More than one entry per key not allowed. Which means no duplicate key is allowed. When

duplicate keys encountered during assignment, the last assignment wins. For example −

Live Demo

#!/usr/bin/python

dict = {'Name': 'Zara', 'Age': 7, 'Name': 'Manni'}

print "dict['Name']: ", dict['Name']

When the above code is executed, it produces the following result −

dict['Name']: Manni

(b) Keys must be immutable. Which means you can use strings, numbers or tuples as dictionary

keys but something like ['key'] is not allowed. Following is a simple example −

Live Demo

#!/usr/bin/python

dict = {['Name']: 'Zara', 'Age': 7}

print "dict['Name']: ", dict['Name']

When the above code is executed, it produces the following result −

Traceback (most recent call last):

File "test.py", line 3, in <module>

dict = {['Name']: 'Zara', 'Age': 7};

TypeError: unhashable type: 'list'

Tuples are immutable which means you cannot update or change the values of tuple

elements. You are able to take portions of existing tuples to create new tuples as the

following example demonstrates −

CMRTC 31

 VISION-BASED HUMAN ACTIVITY RECOGNITION

Live Demo

#!/usr/bin/python

tup1 = (12, 34.56);

tup2 = ('abc', 'xyz');

Following action is not valid for tuples

tup1[0] = 100;

So let's create a new tuple as follows

tup3 = tup1 + tup2;

print tup3;

When the above code is executed, it produces the following result −

(12, 34.56, 'abc', 'xyz')

Delete Tuple Elements

Removing individual tuple elements is not possible. There is, of course, nothing wrong with

putting together another tuple with the undesired elements discarded.

To explicitly remove an entire tuple, just use the del statement. For example −

Live Demo

#!/usr/bin/python

tup = ('physics', 'chemistry', 1997, 2000);

print tup;

del tup;

print "After deleting tup : ";

print tup;

This produces the following result. Note an exception raised, this is because after del tup

tuple does not exist any more −

('physics', 'chemistry', 1997, 2000)

After deleting tup :

Traceback (most recent call last):

File "test.py", line 9, in <module>

print tup;

NameError: name 'tup' is not defined

CMRTC 32

 VISION-BASED HUMAN ACTIVITY RECOGNITION

7.2 DJANGO

Django is a high-level Python Web framework that encourages rapid development and clean,

pragmatic design. Built by experienced developers, it takes care of much of the hassle of Web

development, so you can focus on writing your app without needing to reinvent the wheel. It’s

free and open source.

Django's primary goal is to ease the creation of complex, database-driven websites. Django

emphasizes reusabilityand "pluggability" of components, rapid development, and the principle

of don't repeat yourself. Python is used throughout, even for settings files and data models.

Django also provides an optional administrative create, read, update and delete interface that is

generated dynamically through introspection and configured via admin models

CMRTC 33

 VISION-BASED HUMAN ACTIVITY RECOGNITION

7.2.1 Create a Project

Whether you are on Windows or Linux, just get a terminal or a cmd prompt and navigate

to the place you want your project to be created, then use this code −

$ django-admin startproject myproject

This will create a "myproject" folder with the following structure −

myproject/

manage.py

myproject/

 init .py

settings.py

urls.py

wsgi.py

The Project Structure

The “myproject” folder is just your project container, it actually contains two elements −

manage.py − This file is kind of your project local django-admin for interacting with your project

via command line (start the development server, sync db...). To get a full list of command

accessible via manage.py you can use the code −

$ python manage.py help

The “myproject” subfolder − This folder is the actual python package of your project. It

contains four files −

CMRTC 34

 VISION-BASED HUMAN ACTIVITY RECOGNITION

 init .py − Just for python, treat this folder as package.

settings.py − As the name indicates, your project settings.

urls.py − All links of your project and the function to call. A kind of ToC of your project.

wsgi.py − If you need to deploy your project over WSGI.

Setting Up Your Project

Your project is set up in the subfolder myproject/settings.py. Following are some important

options you might need to set −

DEBUG = True

This option lets you set if your project is in debug mode or not. Debug mode lets you get more

information about your project's error. Never set it to ‘True’ for a live project. However, this has

to be set to ‘True’ if you want the Django light server to serve static files. Do it only in the

development mode.

DATABASES = {

'default': {

'ENGINE': 'django.db.backends.sqlite3',

'NAME': 'database.sql',

'USER': '',

'PASSWORD': '',

'HOST': '',

'PORT': '',

}

}

Database is set in the ‘Database’ dictionary. The example above is for SQLite engine. As stated

earlier, Django also supports −

MySQL (django.db.backends.mysql)

PostGreSQL (django.db.backends.postgresql_psycopg2)

Oracle (django.db.backends.oracle) and NoSQL DB

MongoDB (django_mongodb_engine)

Before setting any new engine, make sure you have the correct db driver installed.

You can also set others options like: TIME_ZONE, LANGUAGE_CODE, TEMPLATE…

CMRTC 35

 VISION-BASED HUMAN ACTIVITY RECOGNITION

Now that your project is created and configured make sure it's working −

$ python manage.py runserver

You will get something like the following on running the above code −

Validating models...

0 errors found

September 03, 2015 - 11:41:50

Django version 1.6.11, using settings 'myproject.settings'

Starting development server at http://127.0.0.1:8000/

Quit the server with CONTROL-C.

A project is a sum of many applications. Every application has an objective and can be reused

into another project, like the contact form on a website can be an application, and can be reused

for others. See it as a module of your project.

7.2.2 Create Application

We assume you are in your project folder. In our main “myproject” folder, the same folder

then manage.py −

$ python manage.py startapp myapp

You just created myapp application and like project, Django create a “myapp” folder with

the application structure −

myapp/

 init .py

admin.py

models.py

tests.py

views.py

 init .py − Just to make sure python handles this folder as a package.

admin.py − This file helps you make the app modifiable in the admin interface.

models.py − This is where all the application models are stored.

tests.py − This is where your unit tests are.

views.py − This is where your application views are.

Get the Project to Know About Your Application

CMRTC 36

 VISION-BASED HUMAN ACTIVITY RECOGNITION

At this stage we have our "myapp" application, now we need to register it with our Django

project "myproject". To do so, update INSTALLED_APPS tuple in the settings.py file of

your project (add your app name) −

INSTALLED_APPS = (

'django.contrib.admin',

'django.contrib.auth',

'django.contrib.contenttypes',

'django.contrib.sessions',

'django.contrib.messages',

'django.contrib.staticfiles',

'myapp',

)

Creating forms in Django, is really similar to creating a model. Here again, we just need to

inherit from Django class and the class attributes will be the form fields. Let's add a forms.py file

in myapp folder to contain our app forms. We will create a login form.

myapp/forms.py

#-*- coding: utf-8 -*-

from django import forms

class LoginForm(forms.Form):

user = forms.CharField(max_length = 100)

password = forms.CharField(widget = forms.PasswordInput())

As seen above, the field type can take "widget" argument for html rendering; in our case, we

want the password to be hidden, not displayed. Many others widget are present in Django:

DateInput for dates, CheckboxInput for checkboxes, etc.

Using Form in a View

There are two kinds of HTTP requests, GET and POST. In Django, the request object passed as

parameter to your view has an attribute called "method" where the type of the request is set, and

all data passed via POST can be accessed via the request.POST dictionary.

Let's create a login view in our myapp/views.py −

CMRTC 37

 VISION-BASED HUMAN ACTIVITY RECOGNITION

#-*- coding: utf-8 -*-

from myapp.forms import LoginForm

def login(request):

username = "not logged in"

if request.method == "POST":

#Get the posted form

MyLoginForm = LoginForm(request.POST)

if MyLoginForm.is_valid():

username = MyLoginForm.cleaned_data['username']

else:

MyLoginForm = Loginform()

return render(request, 'loggedin.html', {"username" : username})

The view will display the result of the login form posted through the loggedin.html. To test it, we

will first need the login form template. Let's call it login.html.

<html>

<body>

<form name = "form" action = "{% url "myapp.views.login" %}"

method = "POST" >{% csrf_token %}

<div style = "max-width:470px;">

<center>

<input type = "text" style = "margin-left:20%;"

placeholder = "Identifiant" name = "username" />

</center>

</div>

<div style = "max-width:470px;">

<center>

<input type = "password" style = "margin-left:20%;"

placeholder = "password" name = "password" />

</center>

</div>

CMRTC 38

 VISION-BASED HUMAN ACTIVITY RECOGNITION

<div style = "max-width:470px;">

<center>

<button style = "border:0px; background-color:#4285F4; margin-top:8%;

height:35px; width:80%;margin-left:19%;" type = "submit"

value = "Login" >

Login

</button>

</center>

</div>

</form>

</body>

</html>

The template will display a login form and post the result to our login view above. You have

probably noticed the tag in the template, which is just to prevent Cross-site Request Forgery

(CSRF) attack on your site.

{% csrf_token %}

Once we have the login template, we need the loggedin.html template that will be rendered after

form treatment.

<html>

<body>

You are : {{username}}

</body>

</html>

Now, we just need our pair of URLs to get started: myapp/urls.py

from django.conf.urls import patterns, url

from django.views.generic import TemplateView

urlpatterns = patterns('myapp.views',

url(r'^connection/',TemplateView.as_view(template_name = 'login.html')),

url(r'^login/', 'login', name = 'login'))

CMRTC 39

 VISION-BASED HUMAN ACTIVITY RECOGNITION

When accessing "/myapp/connection", we will get the following login.html template rendered −

Setting Up Sessions

In Django, enabling session is done in your project settings.py, by adding some lines to the

MIDDLEWARE_CLASSES and the INSTALLED_APPS options. This should be done while

creating the project, but it's always good to know, so MIDDLEWARE_CLASSES should have −

'django.contrib.sessions.middleware.SessionMiddleware'

And INSTALLED_APPS should have −

'django.contrib.sessions'

By default, Django saves session information in database (django_session table or collection),

but you can configure the engine to store information using other ways like: in file or in cache.

When session is enabled, every request (first argument of any view in Django) has a session (dict)

attribute.

Let's create a simple sample to see how to create and save sessions. We have built a simple login

system before (see Django form processing chapter and Django Cookies Handling chapter). Let

us save the username in a cookie so, if not signed out, when accessing our login page you won’t

see the login form. Basically, let's make our login system we used in Django Cookies handling

more secure, by saving cookies server side.

For this, first lets change our login view to save our username cookie server side −

def login(request):

username = 'not logged in'

if request.method == 'POST':

MyLoginForm = LoginForm(request.POST)

if MyLoginForm.is_valid():

username = MyLoginForm.cleaned_data['username']

request.session['username'] = username

else:

MyLoginForm = LoginForm()

return render(request, 'loggedin.html', {"username" : username}

CMRTC 40

 VISION-BASED HUMAN ACTIVITY RECOGNITION

Then let us create formView view for the login form, where we won’t display the form if cookie

is set −

def formView(request):

if request.session.has_key('username'):

username = request.session['username']

return render(request, 'loggedin.html', {"username" : username})

else:

return render(request, 'login.html', {})

Now let us change the url.py file to change the url so it pairs with our new view −

from django.conf.urls import patterns, url

from django.views.generic import TemplateView

urlpatterns = patterns('myapp.views',

url(r'^connection/','formView', name = 'loginform'),

url(r'^login/', 'login', name = 'login'))

When accessing /myapp/connection, you will get to see the following page

8. SYSTEM STUDY

CMRTC 41

 VISION-BASED HUMAN ACTIVITY RECOGNITION

8. SYSTEM STUDY

8.1 FEASIBILITY STUDY

The feasibility of the project is analyzed in this phase and business proposal is put forth with a

very general plan for the project and some cost estimates. During system analysis the feasibility

study of the proposed system is to be carried out. This is to ensure that the proposed system is

not a burden to the company. For feasibility analysis, some understanding of the major

requirements for the system is essential.

Three key considerations involved in the feasibility analysis are,

 ECONOMICAL FEASIBILITY

 TECHNICAL FEASIBILITY

 SOCIAL FEASIBILITY

8.1.1 ECONOMICAL FEASIBILITY

This study is carried out to check the economic impact that the system will have on the

organization. The amount of fund that the company can pour into the research and development

of the system is limited. The expenditures must be justified. Thus the developed system as well

within the budget and this was achieved because most of the technologies used are freely

available. Only the customized products had to be purchased.

8.1.2 TECHNICAL FEASIBILITY

This study is carried out to check the technical feasibility, that is, the technical requirements of

the system. Any system developed must not have a high demand on the available technical

resources. This will lead to high demands on the available technical resources. This will lead to

high demands being placed on the client. The developed system must have a modest requirement,

as only minimal or null changes are required for implementing this system.

CMRTC 42

 VISION-BASED HUMAN ACTIVITY RECOGNITION

8.1.3 SOCIAL FEASIBILITY

The aspect of study is to check the level of acceptance of the system by the user. This includes

the process of training the user to use the system efficiently. The user must not feel threatened by

the system, instead must accept it as a necessity. The level of acceptance by the users solely

depends on the methods that are employed to educate the user about the system and to make him

familiar with it. His level of confidence must be raised so that he is also able to make some

constructive criticism, which is welcomed, as he is the final user of the system.

 9. SYSTEM TESTING

CMRTC 43

 VISION-BASED HUMAN ACTIVITY RECOGNITION

9. SYSTEM TESTING

The purpose of testing is to discover errors. Testing is the process of trying to discover every

conceivable fault or weakness in a work product. It provides a way to check the functionality of

components, sub assemblies, assemblies and/or a finished product It is the process of exercising

software with the intent of ensuring that the Software system meets its requirements and user

expectations and does not fail in an unacceptable manner. There are various types of test. Each

test type addresses a specific testing requirement.

TYPES OF TESTS

9.1 Unit testing

Unit testing involves the design of test cases that validate that the internal program logic is

functioning properly, and that program inputs produce valid outputs. All decision branches and

internal code flow should be validated. It is the testing of individual software units of the

application .it is done after the completion of an individual unit before integration. This is a

structural testing, that relies on knowledge of its construction and is invasive. Unit tests perform

basic tests at component level and test a specific business process, application, and/or system

configuration. Unit tests ensure that each unique path of a business process performs accurately

to the documented specifications and contains clearly defined inputs and expected results.

9.2 Integration testing

Integration tests are designed to test integrated software components to determine if they actually

run as one program. Testing is event driven and is more concerned with the basic outcome of

screens or fields. Integration tests demonstrate that although the components were individually

satisfaction, as shown by successfully unit testing, the combination of components is correct and

consistent. Integration testing is specifically aimed at exposing the problems that arise from the

combination of components.

9.3 Functional test

Functional tests provide systematic demonstrations that functions tested are available as

specified by the business and technical requirements, system documentation, and user manuals.

CMRTC 44

 VISION-BASED HUMAN ACTIVITY RECOGNITION

Functional testing is centered on the following items:

Valid Input : identified classes of valid input must be accepted.

Invalid Input : identified classes of invalid input must be rejected.

Functions : identified functions must be exercised.

Output : identified classes of application outputs must be exercised.

Systems/Procedures : interfacing systems or procedures must be invoked.

Organization and preparation of functional tests is focused on requirements, key functions, or

special test cases. In addition, systematic coverage pertaining to identify Business process flows;

data fields, predefined processes, and successive processes must be considered for testing.

Before functional testing is complete, additional tests are identified and the effective value of

current tests is determined.

9.4 System Test

System testing ensures that the entire integrated software system meets requirements. It tests a

configuration to ensure known and predictable results. An example of system testing is the

configuration oriented system integration test. System testing is based on process descriptions

and flows, emphasizing pre-driven process links and integration points.

9.5 White Box Testing

White Box Testing is a testing in which in which the software tester has knowledge of the inner

workings, structure and language of the software, or at least its purpose. It is purpose. It is used

to test areas that cannot be reached from a black box level.

9.6 Black Box Testing

Black Box Testing is testing the software without any knowledge of the inner workings, structure

or language of the module being tested. Black box tests, as most other kinds of tests, must be

written from a definitive source document, such as specification or requirements document, such

as specification or requirements document. It is a testing in which the software under test is

CMRTC 45

 VISION-BASED HUMAN ACTIVITY RECOGNITION

treated, as a black box .you cannot “see” into it. The test provides inputs and responds to outputs

without considering how the software works.

9.7 Unit Testing

Unit testing is usually conducted as part of a combined code and unit test phase of the software

lifecycle, although it is not uncommon for coding and unit testing to be conducted as two distinct

phases.

9.8 Test strategy and approach

Field testing will be performed manually and functional tests will be written in detail.

Test objectives

• All field entries must work properly.

• Pages must be activated from the identified link.

• The entry screen, messages and responses must not be delayed.

Features to be tested

• Verify that the entries are of the correct format

• No duplicate entries should be allowed

• All links should take the user to the correct page.

9.9 Integration Testing

Software integration testing is the incremental integration testing of two or more integrated

software components on a single platform to produce failures caused by interface defects.

The task of the integration test is to check that components or software applications, e.g.

components in a software system or – one step up – software applications at the company level –

interact without error.

Test Results: All the test cases mentioned above passed successfully. No defects encountered.

CMRTC 46

 VISION-BASED HUMAN ACTIVITY RECOGNITION

9.10 Acceptance Testing

User Acceptance Testing is a critical phase of any project and requires significant participation

by the end user. It also ensures that the system meets the functional requirements.

Test Results: All the test cases mentioned above passed successfully. No defects encountered.

9.11 Test Cases

S.no Test Case
Excepted

Result
Result

Remarks(IF

Fails)

1.
Set Video
Source

By Help of CV2
open library we
can set the video

Pass
If opencv not
installed then it
wont work

2.

Live capture
System primary

cam we can use
for HAR System

Pass
If system does

not have then it
will fail

3.
Load video file

from disk

The video file
format important
here

Pass
Based on video
format it will
work

4. Loading Models
Use can load the
Models

Pass
First model has
to download

5.

Test with

Resnet50

This models
download and
got predict
results

Pass

Depends on net

speed

6.
Test with

VGG16 Models

Model Loaded

and Got results
Pass

Model Depends

on net

7.
Split video file

into frames

Video file
splitted in to
frames

Pass
If format not
supports then it
wont work

8.

Predict the

Recognition

names

Loaded the

Recognitions

name and

displayed in the
frames

Pass

If dataset not

available then it

will fail

9.
Calculate

accuracy

Accuracy score

calculated

Pass
Accuracy score
based on image
pixel values

10.

Calculate
precession

By Help of

sklearn package

we can calculate

the precession

scores

Pass

Input value

changes the it

wont work

10. SAMPLE CODE

CMRTC 47

 VISION-BASED HUMAN ACTIVITY RECOGNITION

10. SAMPLE CODE

Mainrun.py

import cv2

import argparse

import os

import subprocess

from random import randrange

folder = 'frames'

for filename in os.listdir(folder):

file_path = os.path.join(folder, filename)

try:

if os.path.isfile(file_path) or os.path.islink(file_path):

os.unlink(file_path)

elif os.path.isdir(file_path):

shutil.rmtree(file_path)

except Exception as e:

print('Failed to delete %s. Reason: %s' % (file_path, e))

ap = argparse.ArgumentParser()

ap.add_argument("-i", "--input", type=str, default="",

help="optional path to video file")

args = vars(ap.parse_args())

CMRTC 48

 VISION-BASED HUMAN ACTIVITY RECOGNITION

def FrameCapture(path):

vidObj = cv2.VideoCapture(path)

count = 0

success = 1

#while success:

while count<=25:

vidObj object calls read

function extract frames

success, image = vidObj.read()

Saves the frames with frame-count

cv2.imwrite("frames/frame%d.jpg" % count, image)

count += 1

Driver Code

if name == ' main ':

Calling the function

FrameCapture(args["input"])

inputImage = "frames/frame"+str(randrange(25))+".jpg"

runvalue = "classify_image.py -i "+inputImage

subprocess.call("python "+runvalue)

harActivity = "human_activity_reco.py --model resnet-34_kinetics.onnx --classes

action_recognition_kinetics.txt --input "+args["input"]

CMRTC 49

 VISION-BASED HUMAN ACTIVITY RECOGNITION

subprocess.call("python "+harActivity)

scores = "Reportgenearation.py"

subprocess.call("python "+scores)

HAR Model

USAGE

python human_activity_reco.py --model resnet-34_kinetics.onnx --classes

action_recognition_kinetics.txt --input example_activities.mp4

python human_activity_reco.py --model resnet-34_kinetics.onnx --classes

action_recognition_kinetics.txt

import the necessary packages

import numpy as np

import argparse

import imutils

import sys

import cv2

construct the argument parser and parse the arguments

ap = argparse.ArgumentParser()

ap.add_argument("-m", "--model", required=True,

help="path to trained human activity recognition model")

ap.add_argument("-c", "--classes", required=True,

help="path to class labels file")

ap.add_argument("-i", "--input", type=str, default="",

CMRTC 50

 VISION-BASED HUMAN ACTIVITY RECOGNITION

help="optional path to video file")

args = vars(ap.parse_args())

load the contents of the class labels file, then define the sample

duration (i.e., # of frames for classification) and sample size

(i.e., the spatial dimensions of the frame)

CLASSES = open(args["classes"]).read().strip().split("\n")

SAMPLE_DURATION = 16

SAMPLE_SIZE = 112

load the human activity recognition model

print("[INFO] loading human activity recognition model...")

net = cv2.dnn.readNet(args["model"])

grab a pointer to the input video stream

print("[INFO] accessing video stream...")

vs = cv2.VideoCapture(args["input"] if args["input"] else 0)

loop until we explicitly break from it

while True:

initialize the batch of frames that will be passed through the

model

frames = []

loop over the number of required sample frames

for i in range(0, SAMPLE_DURATION):

CMRTC 51

 VISION-BASED HUMAN ACTIVITY RECOGNITION

read a frame from the video stream

(grabbed, frame) = vs.read()

if the frame was not grabbed then we've reached the end of

the video stream so exit the script

if not grabbed:

print("[INFO] no frame read from stream - exiting")

sys.exit(0)

otherwise, the frame was read so resize it and add it to

our frames list

frame = imutils.resize(frame, width=400)

frames.append(frame)

now that our frames array is filled we can construct our blob

blob = cv2.dnn.blobFromImages(frames, 1.0,

(SAMPLE_SIZE, SAMPLE_SIZE), (114.7748, 107.7354, 99.4750),

swapRB=True, crop=True)

blob = np.transpose(blob, (1, 0, 2, 3))

blob = np.expand_dims(blob, axis=0)

pass the blob through the network to obtain our human activity

recognition predictions

net.setInput(blob)

outputs = net.forward()

CMRTC 52

 VISION-BASED HUMAN ACTIVITY RECOGNITION

label = CLASSES[np.argmax(outputs)]

loop over our frames

for frame in frames:

draw the predicted activity on the frame

cv2.rectangle(frame, (0, 0), (300, 40), (0, 0, 0), -1)

cv2.putText(frame, label, (10, 25), cv2.FONT_HERSHEY_SIMPLEX,

0.8, (255, 255, 255), 2)

display the frame to our screen

cv2.imshow("Activity Recognition", frame)

key = cv2.waitKey(1) & 0xFF

if the `q` key was pressed, break from the loop

if key == ord("q"):

break

Classify Image:

USAGE

python classify_image.py --image images/soccer_ball.jpg --model vgg16

import the necessary packages

from tensorflow.keras.applications import ResNet50

from tensorflow.keras.applications import InceptionV3

from tensorflow.keras.applications import Xception # TensorFlow ONLY

from tensorflow.keras.applications import VGG16

CMRTC 53

 VISION-BASED HUMAN ACTIVITY RECOGNITION

from tensorflow.keras.applications import VGG19

#from tensorflow.keras.applications import imagenet_utils

#from keras.applications.vgg16 import preprocess_input, decode_prediction

from keras.applications import imagenet_utils

from tensorflow.keras.applications.inception_v3 import preprocess_input

from tensorflow.keras.preprocessing.image import img_to_array

from tensorflow.keras.preprocessing.image import load_img

import numpy as np

import argparse

import cv2

construct the argument parse and parse the arguments

ap = argparse.ArgumentParser()

ap.add_argument("-i", "--image", required=True,

help="path to the input image")

ap.add_argument("-model", "--model", type=str, default="vgg16",

help="name of pre-trained network to use")

args = vars(ap.parse_args())

define a dictionary that maps model names to their classes

inside Keras

MODELS = {

"vgg16": VGG16,

CMRTC 54

 VISION-BASED HUMAN ACTIVITY RECOGNITION

"vgg19": VGG19,

"inception": InceptionV3,

"xception": Xception, # TensorFlow ONLY

"resnet": ResNet50

}

esnure a valid model name was supplied via command line argument

if args["model"] not in MODELS.keys():

raise AssertionError("The --model command line argument should "

"be a key in the `MODELS` dictionary")

initialize the input image shape (224x224 pixels) along with

the pre-processing function (this might need to be changed

based on which model we use to classify our image)

inputShape = (224, 224)

preprocess = imagenet_utils.preprocess_input

if we are using the InceptionV3 or Xception networks, then we

need to set the input shape to (299x299) [rather than (224x224)]

and use a different image pre-processing function

if args["model"] in ("inception", "xception"):

inputShape = (299, 299)

preprocess = preprocess_input

CMRTC 55

 VISION-BASED HUMAN ACTIVITY RECOGNITION

load our the network weights from disk (NOTE: if this is the

first time you are running this script for a given network, the

weights will need to be downloaded first -- depending on which

network you are using, the weights can be 90-575MB, so be

patient; the weights will be cached and subsequent runs of this

script will be *much* faster)

print("[INFO] loading {}...".format(args["model"]))

Network = MODELS[args["model"]]

model = Network(weights="imagenet")

load the input image using the Keras helper utility while ensuring

the image is resized to `inputShape`, the required input dimensions

for the ImageNet pre-trained network

print("[INFO] loading and pre-processing image...")

image = load_img(args["image"], target_size=inputShape)

image = img_to_array(image)

our input image is now represented as a NumPy array of shape

(inputShape[0], inputShape[1], 3) however we need to expand the

dimension by making the shape (1, inputShape[0], inputShape[1], 3)

so we can pass it through the network

image = np.expand_dims(image, axis=0)

CMRTC 56

 VISION-BASED HUMAN ACTIVITY RECOGNITION

pre-process the image using the appropriate function based on the

model that has been loaded (i.e., mean subtraction, scaling, etc.)

image = preprocess(image)

classify the image

print("[INFO] classifying image with '{}'...".format(args["model"]))

preds = model.predict(image)

print("Type is ",type(model))

P = imagenet_utils.decode_predictions(preds)

loop over the predictions and display the rank-5 predictions +

probabilities to our terminal

for (i, (imagenetID, label, prob)) in enumerate(P[0]):

print("{}. {}: {:.2f}%".format(i + 1, label, prob * 100))

load the image via OpenCV, draw the top prediction on the image,

and display the image to our screen

orig = cv2.imread(args["image"])

(imagenetID, label, prob) = P[0][0]

cv2.putText(orig, "Label: {}, {:.2f}%".format(label, prob * 100),

(10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), 2)

cv2.imshow("Classification", orig)

cv2.waitKey(0)

CMRTC 57

 VISION-BASED HUMAN ACTIVITY RECOGNITION

Reportgeneration.py

demonstration of calculating metrics for a neural network model using sklearn

from sklearn.datasets import make_circles

from sklearn.datasets import load_sample_image

from sklearn.metrics import accuracy_score

from sklearn.metrics import precision_score

from sklearn.metrics import recall_score

from sklearn.metrics import f1_score

from sklearn.metrics import cohen_kappa_score

from sklearn.metrics import roc_auc_score

from sklearn.metrics import confusion_matrix

from keras.models import Sequential

from keras.layers import Dense

from sklearn.feature_extraction import image

import seaborn as sns

from sklearn.metrics import confusion_matrix

from sklearn.metrics import classification_report

import matplotlib.pyplot as plt

generate and prepare the dataset

def get_data():

generate dataset

CMRTC 58

 VISION-BASED HUMAN ACTIVITY RECOGNITION

X, y = make_circles(n_samples=1000, noise=0.1, random_state=1)

#print("Which type you are ..?= am ",len(X),len(y))

#print(X)

#print(" ------------------ ")

#print(y)

split into train and test

n_test = 500

trainX, testX = X[:n_test, :], X[n_test:, :]

trainy, testy = y[:n_test], y[n_test:]

one_image = load_sample_image("flower.jpg")

print('Image shape: {}'.format(one_image.shape))

patches = image.extract_patches_2d(one_image, (2, 2))

print('Patches shape: {}'.format(patches.shape))

print(patches[1])

print(patches[800])

return trainX, trainy, testX, testy

define and fit the model

def get_model(trainX, trainy):

define model

model = Sequential()

model.add(Dense(100, input_dim=2, activation='relu'))

CMRTC 59

 VISION-BASED HUMAN ACTIVITY RECOGNITION

model.add(Dense(1, activation='sigmoid'))

compile model

model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

fit model

model.fit(trainX, trainy, epochs=300, verbose=0)

return model

generate data

trainX, trainy, testX, testy = get_data()

fit model

model = get_model(trainX, trainy)

predict probabilities for test set

yhat_probs = model.predict(testX, verbose=0)

predict crisp classes for test set

yhat_classes = model.predict_classes(testX, verbose=0)

reduce to 1d array

yhat_probs = yhat_probs[:, 0]

yhat_classes = yhat_classes[:, 0]

accuracy: (tp + tn) / (p + n)

accuracy = accuracy_score(testy, yhat_classes)

print('Accuracy: %f' % accuracy)

precision tp / (tp + fp)

CMRTC 60

 VISION-BASED HUMAN ACTIVITY RECOGNITION

precision = precision_score(testy, yhat_classes)

print('Precision: %f' % precision)

recall: tp / (tp + fn)

recall = recall_score(testy, yhat_classes)

print('Recall: %f' % recall)

f1: 2 tp / (2 tp + fp + fn)

f1 = f1_score(testy, yhat_classes)

print('F1 score: %f' % f1)

kappa

kappa = cohen_kappa_score(testy, yhat_classes)

print('Cohens kappa: %f' % kappa)

ROC AUC

auc = roc_auc_score(testy, yhat_probs)

print('ROC AUC: %f' % auc)

confusion matrix

f,ax = plt.subplots(figsize=(8, 8))

matrix = confusion_matrix(testy, yhat_classes)

sns.heatmap(matrix, annot=True, linewidths=0.01,cmap="Blues",linecolor="gray", fmt=

'.1f',ax=ax)

plt.xlabel("Predicted Label")

plt.ylabel("True Label")

CMRTC 61

 VISION-BASED HUMAN ACTIVITY RECOGNITION

plt.title("Confusion Matrix")

plt.show()

print(matrix)

Test lstm model:

cnn lstm model

from numpy import mean

from numpy import std

from numpy import dstack

from pandas import read_csv

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import Flatten

from keras.layers import Dropout

from keras.layers import LSTM

from keras.layers import TimeDistributed

from keras.layers.convolutional import Conv1D

from keras.layers.convolutional import MaxPooling1D

from keras.utils import to_categorical

from matplotlib import pyplot

load a single file as a numpy array

def load_file(filepath):

CMRTC 62

 VISION-BASED HUMAN ACTIVITY RECOGNITION

dataframe = read_csv(filepath, header=None, delim_whitespace=True)

return dataframe.values

load a list of files and return as a 3d numpy array

def load_group(filenames, prefix=''):

loaded = list()

for name in filenames:

data = load_file(prefix + name)

loaded.append(data)

stack group so that features are the 3rd dimension

loaded = dstack(loaded)

return loaded

load a dataset group, such as train or test

def load_dataset_group(group, prefix=''):

filepath = prefix + group + '/Inertial Signals/'

load all 9 files as a single array

filenames = list()

total acceleration

filenames += ['total_acc_x_'+group+'.txt', 'total_acc_y_'+group+'.txt',

'total_acc_z_'+group+'.txt']

body acceleration

filenames += ['body_acc_x_'+group+'.txt', 'body_acc_y_'+group+'.txt',

'body_acc_z_'+group+'.txt']

CMRTC 63

 VISION-BASED HUMAN ACTIVITY RECOGNITION

body gyroscope

filenames += ['body_gyro_x_'+group+'.txt', 'body_gyro_y_'+group+'.txt',

'body_gyro_z_'+group+'.txt']

load input data

X = load_group(filenames, filepath)

load class output

y = load_file(prefix + group + '/y_'+group+'.txt')

return X, y

load the dataset, returns train and test X and y elements

def load_dataset(prefix=''):

load all train

trainX, trainy = load_dataset_group('train', prefix + 'HARDataset/')

print(trainX.shape, trainy.shape)

load all test

testX, testy = load_dataset_group('test', prefix + 'HARDataset/')

print(testX.shape, testy.shape)

zero-offset class values

trainy = trainy - 1

testy = testy - 1

one hot encode y

trainy = to_categorical(trainy)

CMRTC 64

 VISION-BASED HUMAN ACTIVITY RECOGNITION

testy = to_categorical(testy)

print(trainX.shape, trainy.shape, testX.shape, testy.shape)

return trainX, trainy, testX, testy

fit and evaluate a model

def evaluate_model(trainX, trainy, testX, testy):

define model

verbose, epochs, batch_size = 0, 25, 64

n_timesteps, n_features, n_outputs = trainX.shape[1], trainX.shape[2], trainy.shape[1]

reshape data into time steps of sub-sequences

n_steps, n_length = 4, 32

trainX = trainX.reshape((trainX.shape[0], n_steps, n_length, n_features))

testX = testX.reshape((testX.shape[0], n_steps, n_length, n_features))

define model

model = Sequential()

model.add(TimeDistributed(Conv1D(filters=64, kernel_size=3, activation='relu'),

input_shape=(None,n_length,n_features)))

model.add(TimeDistributed(Conv1D(filters=64, kernel_size=3, activation='relu')))

model.add(TimeDistributed(Dropout(0.5)))

model.add(TimeDistributed(MaxPooling1D(pool_size=2)))

model.add(TimeDistributed(Flatten()))

model.add(LSTM(100))

CMRTC 65

 VISION-BASED HUMAN ACTIVITY RECOGNITION

model.add(Dropout(0.5))

model.add(Dense(100, activation='relu'))

model.add(Dense(n_outputs, activation='softmax'))

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

fit network

model.fit(trainX, trainy, epochs=epochs, batch_size=batch_size, verbose=verbose)

evaluate model

_, accuracy = model.evaluate(testX, testy, batch_size=batch_size, verbose=0)

return accuracy

summarize scores

def summarize_results(scores):

print(scores)

m, s = mean(scores), std(scores)

print('Accuracy: %.3f%% (+/-%.3f)' % (m, s))

run an experiment

def run_experiment(repeats=10):

load data

trainX, trainy, testX, testy = load_dataset()

repeat experiment

scores = list()

for r in range(repeats):

CMRTC 66

 VISION-BASED HUMAN ACTIVITY RECOGNITION

score = evaluate_model(trainX, trainy, testX, testy)

score = score * 100.0

print('>#%d: %.3f' % (r+1, score))

scores.append(score)

summarize results

summarize_results(scores)

run the experiment

run_experiment()

11. INPUT & OUTPUT DESIGN

CMRTC 67

 VISION-BASED HUMAN ACTIVITY RECOGNITION

11. INPUT AND OUTPUT DESIGN

11.1 INPUT DESIGN

The input design is the link between the information system and the user. It comprises the

developing specification and procedures for data preparation and those steps are necessary to put

transaction data in to a usable form for processing can be achieved by inspecting the computer to

read data from a written or printed document or it can occur by having people keying the data

directly into the system. The design of input focuses on controlling the amount of input required,

controlling the errors, avoiding delay, avoiding extra steps and keeping the process simple. The

input is designed in such a way so that it provides security and ease of use with retaining the

privacy. Input Design considered the following things:

⚫ What data should be given as input?

⚫ How the data should be arranged or coded?

⚫ The dialog to guide the operating personnel in providing input.

⚫ Methods for preparing input validations and steps to follow when error occur.

OBJECTIVES

⚫ Input Design is the process of converting a user-oriented description of the input into a

computer-based system. This design is important to avoid errors in the data input process

and show the correct direction to the management for getting correct information from the

computerized system.

⚫ It is achieved by creating user-friendly screens for the data entry to handle large volume of

data. The goal of designing input is to make data entry easier and to be free from errors. The

data entry screen is designed in such a way that all the data manipulates can be performed. It

also provides record viewing facilities.

⚫ When the data is entered it will check for its validity. Data can be entered with the help of

screens. Appropriate messages are provided as when needed so that the user will not be in

maize of instant. Thus the objective of input design is to create an input layout that is easy to

follow

CMRTC 68

 VISION-BASED HUMAN ACTIVITY RECOGNITION

11.2 OUTPUT DESIGN

A quality output is one, which meets the requirements of the end user and presents the

information clearly. In any system results of processing are communicated to the users and to

other system through outputs. In output design it is determined how the information is to be

displaced for immediate need and also the hard copy output. It is the most important and direct

source information to the user. Efficient and intelligent output design improves the system’s

relationship to help user decision-making.

⚫ Designing computer output should proceed in an organized, well thought out manner; the

right output must be developed while ensuring that each output element is designed so that

people will find the system can use easily and effectively. When analysis design computer

output, they should Identify the specific output that is needed to meet the requirements.

⚫ Select methods for presenting information

⚫ Create document, report, or other formats that contain information produced by the system.

The output form of an information system should accomplish one or more of the following

objectives.

⚫ Convey information about past activities, current status or projections of the

⚫ Future.

⚫ Signal important events, opportunities, problems, or warnings.

⚫ Trigger an action.

⚫ Confirm an action.

12. SCREENSHOTS

CMRTC 69

 VISION-BASED HUMAN ACTIVITY RECOGNITION

12. SCREEN SHOTS

12.1 Starting Project:

12.2 Run the main Program:

CMRTC 70

 VISION-BASED HUMAN ACTIVITY RECOGNITION

12.3 Loading Tensor flow Libraries:

12.4 Classification with vgg16:

CMRTC 71

 VISION-BASED HUMAN ACTIVITY RECOGNITION

12.5 Get Image label:

12.6 Result from image:

CMRTC 72

 VISION-BASED HUMAN ACTIVITY RECOGNITION

12.7 Loading model HAR:

12.8 Result 1:

CMRTC 73

 VISION-BASED HUMAN ACTIVITY RECOGNITION

12.9 Result 2:

12.10 Result 3:

CMRTC 74

 VISION-BASED HUMAN ACTIVITY RECOGNITION

12.11 Patches from image:

12.13 Accuracy:

CMRTC 75

 VISION-BASED HUMAN ACTIVITY RECOGNITION

12.14 Confusion matrix:

13. CONCLUSION

CMRTC 76

 VISION-BASED HUMAN ACTIVITY RECOGNITION

13. CONCLUSION

We used CNN models to predict the human activities from Wiezmann Dataset. We experimented

with 3 different Convolutional Neural Networks (CNN) for activity recognition. We have

employed transfer learning to get the deep image features and trained machine learning

classifiers. Our experimental results showed the accuracy of 96.95% using VGG-16 with the

implementation of transfer learning. Our experimental results showed that VGG-16

outperformed other CNN models in terms of feature extraction. Our experimental results with

transfer learning technique also showed high performance of VGG-16 as compared to state-of-

the-art methods.

14. BIBILOGRAPHY

CMRTC 77

 VISION-BASED HUMAN ACTIVITY RECOGNITION

14. BIBILOGRAPHY
 14.1 REFERENCES

1. B. Bhandari, J. Lu, X. Zheng, S. Rajasegarar, and C. Karmakar, “Noninvasive sensor based

automated smoking activity detection,” in Pro-ceedings of Annual International Conference of

the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2017, pp. 845–848.

2. L. Yao, Q. Z. Sheng, X. Li, T. Gu, M. Tan, X. Wang, S. Wang, and W. Ruan, “Compressive

representation for device-free activity recognition with passive rfid signal strength,” IEEE

Transactions on Mobile Computing, vol. 17, no. 2, pp. 293–306, 2018.

3. I. Lillo, J. C. Niebles, and A. Soto, “Sparse composition of body poses and atomic actions for

human activity recognition in rgb-d videos,” Image and Vision Computing, vol. 59, pp. 63–75,

2017.

4. W. Zhu, C. Lan, J. Xing, W. Zeng, Y. Li, L. Shen, and X. Xie, “Co-occurrence feature learning

for skeleton based action recognition using regularized deep lstm networks,” in Thirtieth AAAI

Conference on Artificial Intelligence, 2016.

5. C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and

A. Rabinovich, “Going deeper with convolutions,” in Proceedings of the IEEE conference on

computer vision and pattern recognition, 2015, pp. 1–9.

6. J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-Fei, “ImageNet: A large-scale

hierarchical image database,” in Proceedings of IEEE Conference on Computer Vision and

Pattern Recognition, June 2009, pp. 248–255.

7. A. Jalal, N. Sarif, J. T. Kim, and T.-S. Kim, “Human activity recognition via recognized body

parts of human depth silhouettes for residents monitoring services at smart home,” Indoor and

built environment, vol. 22, no. 1, pp. 271–279, 2013.

CMRTC 78

 VISION-BASED HUMAN ACTIVITY RECOGNITION

8. K. Simonyan and A. Zisserman, “Two-stream convolutional networks for action recognition in

videos,” in Advances in neural information processing systems, 2014, pp. 568–576.

9. G. Gkioxari, R. Girshick, and J. Malik, “Contextual action recognition with r* cnn,” in

Proceedings of the IEEE international conference on computer vision, 2015, pp. 1080–1088.

10. L. Wang, Y. Xiong, Z. Wang, and Y. Qiao, “Towards good practices for very deep two- stream

convnets,” arXiv preprint arXiv:1507.02159, 2015.

11. D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Deep end2end voxel2voxel

prediction,” in Proceedings of the IEEE conference on computer vision and pattern recognition

workshops, 2016, pp. 17–24.

12. P. Wang, W. Li, J. Wan, P. Ogunbona, and X. Liu, “Cooperative trainingof deep aggregation

networks for rgb-d action recognition,” in Thirty-Second AAAI Conference on Artificial

Intelligence, 2018.

13. S. Ji, W. Xu, M. Yang, and K. Yu, “3d convolutional neural networks for human action

recognition,” IEEE transactions on pattern analysis and machine intelligence, vol. 35, no. 1, pp.

221–231, 2013.

14. P. Khaire, P. Kumar, and J. Imran, “Combining cnn streams of rgb-d and skeletal data for

human activity recognition,” Pattern Recognition Letters, vol. 115, pp. 107–116, 2018.

15. A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei, “Large-scale

video classification with convolutional neural networks,” in Proceedings of the IEEE

conference on Computer Vision and Pattern Recognition, 2014, pp. 1725–1732.

16. D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Learning spatiotemporal features

with 3d convolutional networks,” in Proceedings of the IEEE international conference on

computer vision, 2015, pp. 4489–4497.

CMRTC 79

 VISION-BASED HUMAN ACTIVITY RECOGNITION

17. K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image

recognition,” arXiv preprint arXiv:1409.1556, 2014.

18. Z. Wharton, E. Thomas, B. Debnath, and A. Behera, “A vision-based transfer learning

approach for recognizing behavioral symptoms in people with dementia,” in 2018 15th IEEE

International Conference on Advanced Video and Signal Based Surveillance (AVSS). IEEE,

2018, pp. 1–6.

19. J. Cai, X. Tang, and R. Zhong, “Silhouettes based human action recognition by procrustes

analysis and fisher vector encoding,” in International Conference on Image and Video

Processing, and Artificial Intelligence, vol. 10836. International Society for Optics and

Photonics, 2018, p. 1083612.

20. S. S. Kumar and M. John, “Human activity recognition using optical flow based feature set,”

in Proceedings of IEEE International Carnahan conference on security technology (ICCST).

IEEE, 2016, pp. 1–5.

21. W. Feng, H. Tian, and Y. Xiao, “Research on temporal structure for action recognition,” in

Chinese Conference on Biometric Recognition. Springer, 2017, pp. 625–632.

22. P. Y. Han, K. E. Yee, and O. S. Yin, “Localized temporal representation in human action

recognition,” in Proceedings of International Confer-ence on Network, Communication and

Computing. ACM, 2018, pp.261–266..

 14.2 GIT HUB REPOSITORY LINK

1. https://github.com/bmanishkumar11/VISION-BASED-HUMAN-ACTIVITY-RECOGNITION

International Journal of Advance Research, Ideas and Innovations in Technology

© 2022, www.IJARIIT.com All Rights Reserved Page |378

ISSN: 2454-132X
Impact Factor: 6.078

(Volume 8, Issue 2 - V8I2-1320)

Available online at: https://www.ijariit.com

Vison-based human activity recognition
M. Madhusudhan

madhusudhan.cse@cmrtc.ac.in

CMR Technical Campus, Hyderabad,

Telangana

B. Manish Kumar

177r1a05j5@cmrtc.ac.in

CMR Technical Campus, Hyderabad,

Telangana

P Rohit

177r1a0599@cmrtc.ac.in

CMR Technical Campus, Hyderabad,

Telangana

V. Sri Ram Reddy

167r1a05p7@cmrtc.ac.in

CMR Technical Campus, Hyderabad, Telangana

V. Sai Chandana

177r1a0559@cmrtc.ac.in

CMR Technical Campus, Hyderabad, Telangana

ABSTRACT

There have been substantial advances in HAR (Human Activity Recognition) in the past several years due to the

advancement of the IoT (Internet of Things). HAR may be used in a range of contexts, including elder care, surveillance

systems, and anomalous behavior detection. Different machine learning techniques have been used to anticipate human

actions in a particular circumstance. Feature engineering techniques, which may pick an ideal collection of features, have

outperformed typical machine learning techniques. Deep learning models, like CNN (Convolutional Neural Networks),

on the other hand, are known to extract features and minimize computing costs automatically. We employ the CNN model

for predicting actions from the Weizmann Dataset in this article. To extract deep image features and trained machine

learning classifiers, transfer learning is used in particular. We found that VGG-16 has an accuracy of 96.95 percent in

our experiments. We also found that VGG-16 outperformed the rest of the CNN models that were used in our experiments.

Keywords: Convolutional Neural Network, Activity recognition, Deep Learning.

1. INTRODUCTION
HAR is a prominent study topic due to its wider applications in surveillance systems, automated homes, and elderly care. Human

activity recognition has been the subject of several topics in the last few years. Existing works are either wearable or non-wearable.

A wearable HAR system employs sensors that are fixed on the body. The nature of wearable-based HAR systems is intrusive. Non-

wearable HAR does not need any sensors to be attached to the person or the carrying of any device to recognize the activity. These

systems are further classified into two types: (i) Sensor-based and (ii) vision-based. The sensor-based system identifies human

activity using RF signals from sensors including Wi-Fi signals, PIR sensors, and RFID [1]. To identify human actions, a vision-

based system uses images, video frames from IR, or depth cameras. Sensor-based HAR systems are non-intrusive but can’t offer a

higher level of accuracy. As a result, vision-based systems are gaining popularity at present, however, extracting human activities

from the live video is difficult.

According to motion features, video-based activity recognition may be classified as marker-based or vision-based. The optic

wearable marker-based Mocap (motion capture) system is utilized in the marker-based technique. However, it can correctly record

complicated human actions, this method has certain drawbacks. There must be an optical sensor fixed on the human body with

different camera settings. The depth or RGB image is used in the vision-based approach. It does not need the use of external devices

or the attachment of sensors to the body of the user. Since this method is gaining prominence, the HAR system is becoming simpler

and easier to apply in a variety of settings [2].

There are a few vision-based HAR systems that use typical machine learning approaches for activity detection. The usage of deep

learning techniques instead of standard approaches to machine learning has increased significantly. CNNs are often used in computer

vision applications. Images are processed using a sequence of convolutional layers [3]. From the Weizmann Dataset, we utilize

CNN to identify human activities. The frames for each action were first retrieved from the videos. Transfer learning is used to

acquire deep image features as well as trained machine learning classifiers. To categorize activities, we used three different CNN

algorithms and compared our findings to previous work on the same dataset.

file:///C:/omak/Downloads/www.IJARIIT.com
https://www.ijariit.com/?utm_source=pdf&utm_medium=edition&utm_campaign=OmAkSols&utm_term=V8I2-1320
mailto:madhusudhan.cse@cmrtc.ac.in
mailto:177r1a05j5@cmrtc.ac.in
mailto:177r1a0599@cmrtc.ac.in
mailto:167r1a05p7@cmrtc.ac.in
mailto:177r1a0559@cmrtc.ac.in

International Journal of Advance Research, Ideas and Innovations in Technology

© 2022, www.IJARIIT.com All Rights Reserved Page |379

2. RELATED WORK
Vision-based human activity identification has recently gotten significant attention. Handcrafted feature extraction from

videos/images and conventional classifiers for activity identification has been used in the majority of the studies. In many cases,

conventional methods yielded the best outcomes and showed the highest levels of performance. Traditional approaches, on the other

hand, are impractical to utilize in the real world since handcrafted characteristics are heavily reliant on data and are not flexible

enough to adapt to changing conditions [4].

Because of its ability to decode temporal patterns, HMM (“Hidden Markov Model”) approaches are widely employed as recognition

methods in recent years. However, researchers are increasingly turning to deep learning algorithms because of their proficiency in

extracting features automatically and learning deep pattern frameworks. In the computer vision field, deep learning algorithms have

ruled out classical categorization techniques. These algorithms have recently significantly gained attention in the computer vision

field, with excellent results. Consequently, video-based human activity identification using deep learning algorithms has received

considerable interest in recent years.

A mixed-norm regularization function may be added to a deep LSTM network, Zhu et al. suggested an action classification

technique. CNNs are one of the most widely used deep learning approaches in frame/image processing. Several studies have used

2D-CNNs, which take advantage of spatial correlation between video frames and integrate the results using several methodologies.

Many people have employed optical flow as an extra input to 2D-CNN to gain temporal correlations information [IO]. Subsequently,

3D-CNNs were introduced, and they showed remarkable performance in video and frame classification.

Wang et al. used CNN to extract features from depth and RGB frames automatically. The collected features were fed into a fully

connected neural network, which resulted in a higher level of accuracy. Ji et al. suggested a 3D CNN model for activity recognition

that performs 3D convolutions and extracts temporal and spatial properties by recording motion data. ConvNet, a two-stream

convolution layer design devised by Simonyan et al., may obtain excellent results despite insufficient training data.

Khaire et al. developed an algorithm to detect activities by training convnets using RGB-D datasets and combining SoftMax scores

from depth, skeleton, as well as motion images at the classification level. Over a 4D video chunk, Karpathy et al. suggested extending

CNN architecture in the first convolutional layers. While Tran et al. employed a deep 3D-CNN model, (like VGG net) to increase

the model's accuracy by using spatiotemporal convolutions and pooling in all layers.

In contrast, we're more interested in seeing how transfer learning may be employed with CNN models for improving classification

accuracy on a benchmark dataset [5].

3. TRANSFER LEARNING
Transfer learning is a technique for transferring information from previous extensive training to the present model. Transfer learning

allows deep network algorithms to be trained with considerably fewer data. It was utilized to shorten the training time and increase

the model's accuracy. We employ transfer learning in this paper to use information from large-scale datasets like ImageNet. The

frames for each action are first extracted from the videos. Transfer learning is used to acquire deep image features as well as trained

machine learning classifiers. The pre-trained weights on ImageNet are utilized as the preliminary step for transfer learning in all

CNN models. ImageNet is a database of 2000 images (activities from 1 category). Knowledge is transferred from ImageNet weights

to Weizmann datasets since the actions detected in this study fall within the ImageNet domain. The penultimate CNN layer is used

to extract the features. Figure 1 illustrates the fundamental concept of transfer learning.

Training from Scratch Transfer Learning

Fig. 1. Schematic representation of transfer learning

In transfer learning, the pre-trained neural model from a large-scale dataset is preserved while the weights are updated in the trained

model and the pre-trained neural model is used to extract features.

4. IMPLEMENTATION
A. Dataset

We use trials on the Weizmann dataset to test the models' performance in terms of activity recognition. It consists of 90 low-

resolution video frames depicting 9 different individuals doing ten different activities, including bend, jack (or jumping-jack), jump

(or jump-forward-on-2-legs), pjump (or jump-in-place-on-2-legs), run, side (or gallop-sideways), slip, well, wave I (wave 1-hand),

and wave2 (wave 2-hands). For our experiment, we employed nine different actions (excluding “pjump jump-in-place-on-2-legs”).

All videos are first converted into separate frames depending on activity. Table 1 displays the total frames/activity for all 9

participants based on the extracted frames. The complete dataset is subdivided into three sections: testing 20%, training 70%, and

validation 10%.

file:///C:/omak/Downloads/www.IJARIIT.com

International Journal of Advance Research, Ideas and Innovations in Technology

© 2022, www.IJARIIT.com All Rights Reserved Page |380

Table-1: Statistics for the dataset in terms of total frames/activity

B. Discussion and Results

We test three distinct CNNs for activity identification, such as Google's InceptionNet-v3, VGG-16, and VGG-19, to categorize

activities. To use the information obtained from large-scale datasets like ImageNet, we applied transfer learning. Using the

information gained from pre-trained weights on ImageNet, we experimented on the Weizmann dataset. CNNs' penultimate layers

are used to extract the features. We used transfer learning on the VGG-16 CNN algorithm and obtained a 96.95 percent accuracy.

VGG-16 takes a 224x224 image as an input and extracts features from the fc1 layer, yielding a 4096-D vector for each image.

To compare the performance of the various CNN models, we employed transfer learning on additional CNN models including

Google's InceptionNet-v3 and VGG-19. VGG-19 obtained 96.54 percent and Google's InceptionNet-v3 obtained 95.63 percent,

correspondingly. The experimental findings show that VGG-16 outperforms the other CNN models once transfer learning has been

applied to all of the models. The accuracy, precision, f1-score, and recall of given models are reported in Table 2. Figures 2, 3, and

4 demonstrate the confusion matrix of three distinct CNN models [6].

On the Weizmann dataset, we were able to match the performance of other systems that did not include transfer learning. When

using transfer learning to recognize the same dataset, the experiment results indicated that recognition scores improved. Transfer

learning improves recognition accuracy by 1% to 6%. Table 3 compares the performance of the VGG-16 model using transfer

learning to those of the other techniques. Transfer learning is compared against state-of-the-art techniques to see how successful it

is when used with CNN algorithms for increasing recognition results [7].

Table-2: Activity recognition results based on several CNN models

Table-3: Comparison of performance using the Weizmann dataset

Fig. 2. Confusion Matrix for recognizing 9 activities with VGG-16 CNN on Weizmann Dataset

“Activity No. of frames

Jack 729

Bend 639

Run 346

Jump 538

Skip 378

Side 444

Wave1 653

Wave2 624

Walk 566

Total 4917”

Model Precision Accuracy Recall Precision F1-Score

VGG-16 97.00% 96.95% 97.00% 97.00% 97.00%

Inception-v3 96.00% 95.63% 96.00% 96.00% 96.00%

VGG-19 97.00% 96.54% 97.00% 97.00% 96.00%

Model VGG-16 Kumar et al. Cai et al. Han et al. Feng et al.

Accuracy 96.95 95.69% 95.70% 90.00% 94.10%

file:///C:/omak/Downloads/www.IJARIIT.com

International Journal of Advance Research, Ideas and Innovations in Technology

© 2022, www.IJARIIT.com All Rights Reserved Page |381

Fig. 3. Confusion Matrix for recognizing 9 activities with VGG-19 CNN on Weizmann Dataset

Fig. 4. Confusion Matrix for recognizing 9 activities with Inception-v3 CNN on Weizmann Dataset

Figures 2, 3, and 4 illustrate the confusion matrix of three distinct CNNs after transfer learning, which has been employed to

categorize frames of various activities with Google's Inception Net-v3, VGG-16, and VGG-19, correspondingly. Figures 2, 3, and

4 show that VGG-16 has misclassification to forecast running activity as skip, VGG-19 has misclassification to forecast running

activity as skip and skip as walk, and Google's InceptionNet-v3 has misclassification to forecast running activity as skip, all of

which are visually comparable. The accuracy of activity identification has improved because of the use of transfer learning on CNN

models. However, since ImageNet includes photos from different categories, the transfer learning approach employed in our

research using information transferred from the pre-trained weight on ImageNet may be compromised.

5. CONCLUSION
This dataset was analyzed using a CNN model to predict human actions. Three CNNs were tested for activity recognition. To extract

the deep image features as well as train machine learning classifiers, we have used transfer learning techniques. In our experiments,

we found a 96.95 percent accuracy rate utilizing VGG-16 and transfer learning. In our experiments, VGG-16 performed better in

comparison to CNN models to extract features. Additionally, we found that VGG-16 outperformed current best practices in our

experiments using the transfer learning method.

6. REFERENCES

[1] B. Bhandari, J. Lu, X. Zheng, S. Rajasegarar, and C. Karmakar, “Noninvasive sensor-based automated smoking activity

detection,” in Proceedings of Annual International Conference of the IEEE Engineering in Medicine and Biology Society

(EMBC). IEEE, 2017, pp. 845–848.

[2] L. Yao, Q. Z. Sheng, X. Li, T. Gu, M. Tan, X. Wang, S. Wang, and W. Ruan, “Compressive representation for device-free

activity recognition with passive RFID signal strength,” IEEE Transactions on Mobile Computing, vol. 17, no. 2, pp. 293–306,

2018.

[3] Lillo, J. C. Niebles, and A. Soto, “Sparse composition of body poses and atomic actions for human activity recognition in RGB-

d videos,” Image and Vision Computing, vol. 59, pp. 63–75, 2017.

[4] W. Zhu, C. Lan, J. Xing, W. Zeng, Y. Li, L. Shen, and X. Xie, “Co-occurrence feature learning for skeleton-based action

recognition using regularized deep LSTM networks,” in Thirtieth AAAI Conference on Artificial Intelligence, 2016.

[5] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper

with convolutions,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 1–9.

[6] J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-Fei, “ImageNet: A large-scale hierarchical image database,” in

Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, June 2009, pp. 248–255.

[7] S. Deep and X. Zheng, "Leveraging CNN and Transfer Learning for Vision-based Human Activity Recognition," 2019 29th

International Telecommunication Networks and Applications Conference (ITNAC), 2019, pp. 1-4, DOI:

10.1109/ITNAC46935.2019.9078016.

file:///C:/omak/Downloads/www.IJARIIT.com

	Microsoft Word - VISION-BASED HUMAN ACTIVITY RECOGNITION
	62d35b865d1f567bfdbaa34ab4b75ce30f193d2f004fdb3a626f77af6807dfdd.pdf
	efd1f10615a0eaa4e17bd9d69988d57d26132ef26cfa3a19b91c897ab6e1731b.pdf
	6f272e74c67ca6f24c0e7bab4b6e6a8511e358b1736359560d7949937a304139.pdf
	8fe2120382c0857b267b7d2cc175088ac545ceb1715910bc71f31c4f8d273ce9.pdf
	94be50b512f9741ecc8ff7b0c5961dedcd87a0f47207fc9cade89fcbfb1e886e.pdf
	285fbf12ab480c456710ca3bf0ac41cb9ec73281e7a9f2d5995139ba32ce349a.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf

	94be50b512f9741ecc8ff7b0c5961dedcd87a0f47207fc9cade89fcbfb1e886e.pdf
	285fbf12ab480c456710ca3bf0ac41cb9ec73281e7a9f2d5995139ba32ce349a.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf

	Microsoft Word - VISION-BASED HUMAN ACTIVITY RECOGNITION
	Microsoft Word - VISION-BASED HUMAN ACTIVITY RECOGNITION
	Microsoft Word - VISION-BASED HUMAN ACTIVITY RECOGNITION

	8fe2120382c0857b267b7d2cc175088ac545ceb1715910bc71f31c4f8d273ce9.pdf
	94be50b512f9741ecc8ff7b0c5961dedcd87a0f47207fc9cade89fcbfb1e886e.pdf
	285fbf12ab480c456710ca3bf0ac41cb9ec73281e7a9f2d5995139ba32ce349a.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf

	94be50b512f9741ecc8ff7b0c5961dedcd87a0f47207fc9cade89fcbfb1e886e.pdf
	285fbf12ab480c456710ca3bf0ac41cb9ec73281e7a9f2d5995139ba32ce349a.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf

	Microsoft Word - VISION-BASED HUMAN ACTIVITY RECOGNITION
	Microsoft Word - VISION-BASED HUMAN ACTIVITY RECOGNITION
	Microsoft Word - VISION-BASED HUMAN ACTIVITY RECOGNITION

	Microsoft Word - VISION-BASED HUMAN ACTIVITY RECOGNITION
	6f272e74c67ca6f24c0e7bab4b6e6a8511e358b1736359560d7949937a304139.pdf
	8fe2120382c0857b267b7d2cc175088ac545ceb1715910bc71f31c4f8d273ce9.pdf
	94be50b512f9741ecc8ff7b0c5961dedcd87a0f47207fc9cade89fcbfb1e886e.pdf
	285fbf12ab480c456710ca3bf0ac41cb9ec73281e7a9f2d5995139ba32ce349a.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf

	94be50b512f9741ecc8ff7b0c5961dedcd87a0f47207fc9cade89fcbfb1e886e.pdf
	285fbf12ab480c456710ca3bf0ac41cb9ec73281e7a9f2d5995139ba32ce349a.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf

	Microsoft Word - VISION-BASED HUMAN ACTIVITY RECOGNITION
	Microsoft Word - VISION-BASED HUMAN ACTIVITY RECOGNITION
	Microsoft Word - VISION-BASED HUMAN ACTIVITY RECOGNITION

	8fe2120382c0857b267b7d2cc175088ac545ceb1715910bc71f31c4f8d273ce9.pdf
	94be50b512f9741ecc8ff7b0c5961dedcd87a0f47207fc9cade89fcbfb1e886e.pdf
	285fbf12ab480c456710ca3bf0ac41cb9ec73281e7a9f2d5995139ba32ce349a.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf

	94be50b512f9741ecc8ff7b0c5961dedcd87a0f47207fc9cade89fcbfb1e886e.pdf
	285fbf12ab480c456710ca3bf0ac41cb9ec73281e7a9f2d5995139ba32ce349a.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf
	e394eee5c37f16dd769eda93c8b87911f49c6ba0e5ea639c301d395b338ebfdd.pdf
	09adaf9fc7ce0cddf7375ceeab476654341137121da7e60936fd323683af5153.pdf

	Microsoft Word - VISION-BASED HUMAN ACTIVITY RECOGNITION
	Microsoft Word - VISION-BASED HUMAN ACTIVITY RECOGNITION
	Microsoft Word - VISION-BASED HUMAN ACTIVITY RECOGNITION

	5ce08571e34ccbda7224d1d5ca45065120f7daa13687bc30a0f0371326afdf68.pdf
	8baf6e267ebca9f7e62b3efcf6b31ac76a98e2f0e9db094da766a4a72a823002.pdf

